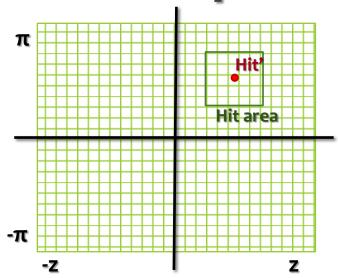
Status of HFT CA track finder. Grid

G.Kozlov, I.Kisel, V.Akishina, M.Zyzak

Calculation speed


With pileup

Grid: 12.4 ms Singlets: 16.8 ms

Efficiency (%)	Doublets (ms/ev)		Triplets (ms/ev)		Tracks (ms/ev)
Without grid					
88.4	13989.1		792.8		246.5
With grid (optimal hit area)					
88.0	198.3	х70.6	654.5		194.6
With grid and triplet vectorization					
88.0	204.9	x68.2	84.5	x7.7	194.1
With grid and triplet vectorization; different hit area for high and low momentum tracks					
88.4	121.6	x114.7	67.3	x9.8	198.6

Backup

Grid implementation

Testing

- Grid is based on Z-coordinate and angle.
- Track finding direction from outer station.
- Main steps of Grid usage:
 - Extrapolate hit -> hit' to the previous station in direction of PV;
 - Create Hit area around the hit' using dz and dα;
 - Search for the next hit of the doublet inside Hit area.
- Number of bins in Grid depends on the number of hits on station.
- 5 events with pileup, 10 ~150 tracks;
- Objective: optimal Hit area;
- Conditions: best efficiency, good calculation speed;
- Dependences:
 - $(dz, d\alpha)$ -> (efficiency, doublets calculation speed);
 - (number of doublets) -> (triplets calculation speed).