Measurement of $W^{ \pm}$single spin asymmetries and W cross section ratio in polarized $p+p$ collisions at $\sqrt{s}=510 \mathrm{GeV}$ at STAR

Devika Gunarathne for the STAR Collaboration
Temple University, Philadelphia, PA, USA
Email: devika.gunarathne@temple.edu

The STAR experiment at RHIC has provided significant contributions to our understanding of the structure of the proton. The STAR experiment is well equipped to measure $W^{ \pm} \rightarrow e^{ \pm}+\nu$ in $\sqrt{s}=510 \mathrm{GeV}$ longitudinally polarized $p+p$ collisions at mid-rapidity $(|\eta|<1)$. W singlespin asymmetries, A_{L}, measured as a function of decay positron (electron) pseudo-rapidity η for $W^{+}\left(W^{-}\right)$are sensitive to the individual helicity polarizations of u and $\bar{d}(d$ and $\bar{u})$ quarks. Due to maximal violation of parity, during the production, W bosons couple to left-handed quarks and right-handed anti-quarks and hence offer direct probes of their respective helicity distributions in the nucleon. The published STAR A_{L} results (combination of 2011 and 2012 data) have been used by several theoretical analyses suggesting a significant impact in constraining the helicity distributions of anti- u and anti- d quarks. In 2013 STAR collected a factor 3 in the figure of merit larger dataset at $\sqrt{s}=510 \mathrm{GeV}$ with a total integrated luminosity of $\sim 300 \mathrm{pb}^{-1}$ with an average beam polarization of $\sim 54 \%$ compared to the dataset used for previous analyses. We will report the status of the analysis of the STAR $2013 \mathrm{~W} A_{L}$ along with the future plans for final W A_{L} results by combining both STAR 2012 and 2013 data of total integrated luminosity of about $\sim 400 \mathrm{pb}^{-1}$.
W cross section ratio $\left(W^{+} / W^{-}\right)$measurements at STAR are sensitive to unpolarized $\mathrm{u}, \mathrm{d}, \bar{u}$, and \bar{d} quark distributions. At these kinematics, STAR is able to measure the quark distributions near Bjorken-x values of 0.1 . The increased statistics will lead to a higher precision measurement of the W^{+} / W^{-}cross section ratio as well as allow for a measurement of its η dependence at mid-rapidity. An update of the W cross section ratio analysis from the STAR 2011, 2012 and 2013 runs is presented.

