Results from Run 13 Wtest production analysis

Devika Gunarathne / Matt Posik / Salvatore Fazio

S&C meeting 04-13-2016

W Test Production Details

Production	Library	Vertex-Finding algo	Tracking algo	nEvents (M)	
Evals 1	SL16b	PPV_W	STI	~12 [only period 1]	
Evals 2	EVAL	PPV_W	STI_updated*	~12 [only period 1]	
Evals 4	EVAL	PPV_W	STICA	~12 [only period 1]	
Yuri - period 1	DEV2/TFG16a	PPV_W	STICA**	~12 [only period 1]	
Yuri - period 2	DEV2/TFG16a	PPV_W	STICA**	~10 [only period 2]	
P14ia [run 13 official period 1]	SL14a	PPV_W	STI	~12 [only period 1]	
P14ig [run 13 official period 2]	SL14g	PPV_W	STI	~10 [only period 2]	

- Yuri's local production was used in the analysis :
 - to evaluate the performance of StiCA in full luminosity range of run 13.
 - to understand if there is any negative interference effect between StiCA and the additional HFT material.

Run 13 Luminosity

• ~50 % of Period 1 statistics is above 300 KHz.

W Test Production analysis-Comparisons

Comparisons	Purpose	Result
EVALS 1 vs EVALS 2	difference between STI vs STI_updated	No difference
EVALS 1 vs EVALS 4	difference between STI vs STICA	18 % enhancement in Final W
Yuri - P1 vs EVALS 4	difference between STICA in EVAL vs STICA in Yuri's code	No difference
EVALS 1 vs p14ia	difference between with and without new HFT material in STAR library	~4 % enhancement in Final W
Yuri's - P1 vs p14ia	difference between STI vs STICA **	22 % enhancement in Final W
Yuri's - P2 vs p14ig	difference between STI vs STICA **	29 % enhancement in Final W

• ** - Yuri's code

Analysis Details / Notes

- All the "evals" productions are from run 13 period 1 (day 76-126)
- 98 runs (0.18 M) have removed from this analysis from each productions [12.2 M] since those runs have failed run QA done for run 13 W AL analysis. 937 runs [12.02 M] were used.
- For period 2 analysis, 716 runs were used. They were also chosen from QA'd run list of run 13 period 2 W AL analysis.
- Official W -AL code were used and run 12 200 GeV BEMC tower calibration gains were used.
- For Each production W code also compiled with the same production library.
- All the comparisons are apple-to-apple [Exactly same # of runs with same # of events that have processed were compared]

Evals 1 vs Evals 2

Apple- to -Apple comparison

To investigate the difference between STI vs STI_updated

Details / Notes

Production	Production Library [also W-code compiled library]	Tracking	vertex finding	BEMC-gains	# of runs used in the comparison	# of events
"evals2"	EVAL	Sti [updated]	PPV_W	run 12 - 200 GeV	896	11.26 M
"evals1"	SL16b	Sti	PPV_W	run 12 200 GeV	896	11.26 M

Events Counts as a function of W cuts

Final W: Et, ZDC

Final W - Et

Final W - ZDC

 No observable considerable difference between Evals 1 vs Evals 2. Meaning no difference between STI vs STI_updated [sti_updated]

Evals 1 vs Evals 4

Apple- to -Apple comparison

To investigate the difference between STI vs STICA

Production	Production Library [also W-code compiled library]	Tracking	vertex finding	BEMC-gains	<i>#</i> of runs used in the comparison	# of events
"evals4"	EVAL	StiCA	PPV_W	run 12 - 200 GeV	896	11.26 M
"evals1"	SL16b	Sti	PPV_W	run 12 200 GeV	896	11.26 M

Events Counts as a function of W cuts

Final W: Et, ZDC

Final W - Et

Final W - ZDC

500

10³

500

Final W Eta

13

Summary

- We see ~18 % enhancement in tracks above Pt = 10 GeV and similar enhancement in final W [> 25 GeV] tracks.
- Significant enhancement of final W Eta in mid rapidity region where a "dip" [data-MC discrepancy] was observed previously.

Yuri's-P1 vs Evals 4

apple- to -apple comparison

To investigate the difference between STICA in EVAL vs STICA in Yuri's code

Production	Production Library [also W-code compiled library]	Tracking	vertex finding	BEMC-gains	<i>#</i> of runs used in the comparison	# of events
"evals4"	EVAL	StiCA	PPV_W	run 12 - 200 GeV	896	6172606
Yuri's - P1 (day 129-161)	DEV2/ TFG16a	StiCA [Yuri's code]	PPV_W	run 12 200 GeV	585	6172606

Events Counts as a function of W cuts

Final W : Et, ZDC

Final W - ZDC

 Absolutely NO difference between Evals 4 vs Yurip1. Meaning no difference between STICA in EVAL vs STICA in Yuri's code.

Evals 1 vs p14ia

To investigate the difference between STI in newer STAR library (SL16b) with HFT material vs STI in old STAR library (SL14a) without HFT materials

Production	Production Library [also W- code compiled	Tracking	vertex finding	BEMC-gains	<i>#</i> of runs used in the comparison	# of events
P14ia [official rur 13 - P1 (day 76-128)	ⁿ SL14ia	Sti	PPV_W	run 12 - 200 GeV	885	11.021 M
"evals1"	SL16b	Sti	PPV_W	run 12 200 GeV	885	11.021 M

Events Counts as a function of W cuts

Final W : Et, ZDC

Final W - ZDC

Final W - Et

Final W Eta

- ~ 4% enhancement in tracks and final Ws.
- This could be caused by new HFT material / tracking definitions in new SL16b library.
- Nothing will change in the physics due to this.

Yuri's-P1 vs P14ia [run 13 official -P1]

apple- to -apple comparison

To investigate the difference between STI vs STICA [STICA is in Yuri's code] in run 13 period 1 [<ZDC> ~ 290 kHZ and 50% statistics is below 300 kHz]

Production	Production Library [also W-code compiled library]	Tracking	vertex finding	BEMC-gains	# of runs used in the comparison	# of events
P14ia [official run 13 - P2 (day 76-126)	SL14a	Sti	PPV_W	run 12 - 200 GeV	585	6172606
Yuri's - P2 (day 76-126)	DEV2/TFG16a	StiCA [Yuri's code]	PPV_W	run 12 200 GeV	585	6172606

Events Counts as a function of W cuts

Final W : Et, ZDC

10

Final W eta

Summary

- ~22 % enhancement in tracks above Pt = 10 GeV and similar enhancement in final W [> 25 GeV] tracks.
- Yuri's production period 1 shows similar results to that of "evals4" which also use "STICA" code on period 1.
- ~18 % change in [evals 1 vs evals 4] + ~ 4% change in [evals 1 vs p14ia] added up to 22% change in Yuri -P1 vs p14ia. So I would say actual changes to W enhancement in run 13 period 1 from tracking improvement [which include HFT material ant STICA], since official Run 13 production to now is ~ 22%.

Yuri's-P2 vs P14ig [run 13 official -P2]

apple- to -apple comparison

To investigate the difference between STI vs STICA [STICA is in Yuri's code] in run 13 period 2 [<ZDC> ~ 350 kHZ and 90% statistics is above 300 kHz] and to test how StiCA deals with the addition HFT materials.

Production	Production Library [also W-code compiled library]	Tracking	vertex finding	BEMC-gains	# of runs used in the comparison	# of events
P14ig [official run 13 - P2 (day 129-161)	SL14ig	Sti	PPV_W	run 12 - 200 GeV	436	5618340
Yuri's - P2 (day 129-161)	DEV2/TFG16a	StiCA [Yuri's code]	PPV_W	run 12 200 GeV	436	5618485

Events Counts as a function of W cuts

Final W : Et, ZDC

Final W - Et

Final W Eta

QCD BG

Summary

- ~29 % enhancement in tracks above Pt = 10 GeV and similar enhancement in final W [> 25 GeV] tracks. So this enhancement is since the official run 13 - period 2 production. If a new test production were to made using EVAL for period 2 I would except enhancement of [29% - ~4%] ~ 25 %.
- Significant enhancement of final W Eta in mid rapidity region where a "dip" was observed previously.
- Significant improvement in signal to background ratio .

W efficiency as a function of ZDC

- •Black(P1), Green (P1) and Blue (P2) used STI tracking
- Red(P1), Yellow (P1), Magenta (P2) used STICA tracking
- •Enhancement in efficiency increases with increasing ZDC .

Summary / Conclusions

- No difference between STI vs STI_updated codes.
- ~18% enhancement in W in run 13 period 1 from STI to STICA codes in STAR library which include HFT materials.
- No difference between STICA in EVAL library vs STICA in Yuri's code.
- ~ 4 % enhancement from STI code with and without HFT materials.
- Yuri's production allows to investigate the STICA tracking performance for whole luminosity range of run 13 where <ZDC> increased from Period 1 to Period 2 by 15 % and 90 % statistics in period 2 lies above <ZDC> of period 1 and also to test how StiCA deals with the additional material of the HFT material in period 2.
- Enhancement in W from Yuri's period 1 production in in agreement with the enhancement in EVALS 4.
- Enhancement in W in period 2 is about ~ 29 % from STI to STICA with No HFT in STI. It would be ~ 25 % from STI to STICA with HFT included in STI.
- Enhancement in W efficiency is significant from STI to STICA. Improvement increases with increasing luminosity.

Reproduction of Run 13 data with STICA+PPV_W settings is urgently requested follow up by MC Embedding production for W AL analysis and cross section analyses.

Analysis from Salvatore

reconstruction of the W-recoil

Regular: Sti official production (SL14a) **StiCa:** Yuri's StiCa private production (dev2)

All W reconstruction cuts applied

No MC correction to get full recoil Pt done!

Sti Mean = 3.82 GeV StiCa Mean= 3.98 GeV PYTHIA prediction = 4.31

Regular: Sti official production (SL14a) **StiCa:** Yuri's StiCa private production (dev2)

All W reconstruction cuts applied No Pt correction done!

- Overall ratio StiCa(Yuri's)/Sti(regular) = 1.11 after W reco. cuts for run 13 period 1
- StiCa W-Pt peak and distribution shifted to the right... lets compare to expectation

StiCa peak on top of the prediction peak → less correction needed!

Lets look at all the TEST productions

Regular: Sti official production (SL14a) StiCa: Yuri's StiCa private production (dev2) TEST Evals1: Sti+PPV test production (SL16a) TEST Evals2: Sti+PPV test production (dev) TEST Evals4: StiCa+PPV test production (dev)

StiCa+PPv: evals4

StiCa+PPV: test production evals4

Yellow filled histo is PYTHIA prediction at generated level (no experimental effects)

Sti+PPv: official current production (SL14a)

Regular: Sti official production (SL14a) **Yellow** is PYTHIA prediction at generated level (no experimental effects)

Sti+PPv: evals1

TEST Evals1: Sti+PPV test production (SL16a) **Yellow** is PYTHIA prediction at generated level (no experimental effects)

Sti+PPv: evals2

TEST Evals2: Sti+PPV test production (dev) **Yellow** is PYTHIA prediction at generated level (no experimental effects)

Conclusions

- StiCa shows a better W-selection efficiency also after the reconstruction cuts
- StiCa reconstructs more hadronic recoil → the reconstruction of the boson Pt before any MC correction is better → correction required will be smaller

Back up 1: Final W Eta - P1

Back up 2 : Final W Eta - P2

W charge Separation

W Charge Separation

QCD BG

Isolation cuts

Isolation cuts

