# Progress on A<sub>N</sub> of Pi0 TSSA using FCS

David Kapukchyan

October 9, 2024

STAR Spin PWG Meeting

# **Recap and Outline**

- Looking at Run 22 fwd\_stream production
  - Production finished
  - Filling spin database in progress
  - Request page: <u>https://drupal.star.bnl.gov/STAR/blog/dkap7827/Run-22-Data-Production-Request</u>
  - Used a file from every single run number greater than 23005043
    - Only runs after and including this run are calibrated
    - When I included runs before this one got bad results
  - Trigger list is in backup, focuses on all EM calorimeter triggers
- Last update: showed some results of  $A_{\rm N}$  of pi0s by picking the pair closest to the mass
- This update: refining pi0 selection
  - Using only highest energy pair of points with energy>1 GeV
  - Also cutting on EPD nmip<0.7



Plot descriptions from top left going clockwise

- 1. Point distributions look normal
- 2. EPD projections of points do show some some outside a central region
  - This may be due to vertex
- 3. EPD nmip of projected points normal
- 4. Energy distribution of points and clusters have large spikes
  - Possibly from hot spots
- Energy distribution of two highest energy pairs look normal but show same spikes as energy

# Point Level QA







Energy of FCS Points



Distribution of nmip values from matching projected clusters and points

3





#### Zoom in on ~80 GeV Points





- Point position reconstruction in energy region without spike is uniform
- Point position reconstruction in energy region with spike has a hot spot at near beam pipe
- Fiducial volume cut may get rid of this

# **Highest Energy Pairs No cuts**

- Most distributions look normal
- Energy spikes same as the photon energy distributions
- Invariant mass with just highest pairs shows bump at pi0 mass over Gaussian background
- Invariant mass of all point pairs has similar shape but different Gaussian as background







Mear

RMS

Mea

RMS

Invariant Mass (Ge)

Underflow

0.387

1 987e+08

0 2327

Underflow

0.452

0.2285

0.494

Underflo

Pt (GeV

0.4878

#### Highest Energy Pairs both EPD projections 0.001<nmip<0.7

- **Distributions very** ٠ similar to the highest energy case
- Point multiplicity has • decreased significantly
- Pi0 bump slightly • enhanced (Overlay plot will be shown soon)

2500 2000

300 F

200





.1 0.2 0.3 0.4 0.5 0.6 (



Energy of Pi0s using highest energy pairs and Epd Cut Photons H1E EndPhEn



Invariant mass of all point pair combinations with Epd Cut Photons 0.370 1200 0.2228 Underflow 1 767e+0 1000 800





#### Highest energy Pairs both EPD projections and nmip>=0.7

- Most distributions look • similar to the "less than" nmip cut ones
- Here I extended the range • of invariant mass to 5 to see if J/psi is visible
  - Nothing obvious at • first glance



Invariant Mass (Ge)





0.4254

0.3121

1.561e+04

RMS

Invariant Mass (GeV

Underflow



Phi of Pi0s using highest energy pairs and Epd Cut Charged

0.0174

1.867





Invariant Mass (GeV)

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0.0045

0.004 E

0.0035

0.003

0.0025 0.002

0.0015

0.001

0.0005

0.25 Invariant Mass (GeV

- Black histograms have no cut
- Blue histogram is EPD nmip<0.7 cut
- Green histogram is EPD nmip>=0.7 cut

H1F BestPi0Phi

RMS

Underflo

-0.01312

.901e-07

1.885 .015e-07

- Point multiplicity clearly reduced
- Looking at just highest pairs of points see a clear suppression of pi0 mass peak with EPD nmip cut
- Even the all point combinations shows a suppression

# Conclusions

- Vertex information coming mostly from VPD and EPD
  - Resolution may be improved if we had TPC calibrated vertex data
- Point reconstruction shows spikes in energy distribution
  - This is also evidenced from the pi0 reconstruction
  - It may be coming from hot spots in the detector
- EPD nmip cut working to give cleaner pi0s
  - More cuts need to be added

# Backup

# List of triggers

- fcsJPsi
- fcsJPDE1
- fcsJPDE0
- fcsJPBC1
- fcsJPBC0
- fcsJPA1
- fcsJPA0
- fcsJP2
- fcsEM3
- fcsEM2
- fcsEM1
- fcsEM0
- fcsEHT-N/S
- fcsDYAsy
- fcsDY
- fcsDiJPAsy
- fcsDiJP