W⁺/W⁻ ratio analysis Run 17

Jae D. Nam Temple Univ.

Recap

- Efficiency study
 - Good agreement between ϵ^{\pm} in η .
 - Anomaly when plotted against E_T^{clst} .
 - Majority of the non-zero slope came from trigger selection.

*** Much of this was found to be due to a bug.

 e^{W±} tagging quickly dives down after Jacobian peak (~40 GeV)

Efficiency (Recap)

• The total efficiency reflects the sum of five different contributions within the kinematic region $\frac{E_T}{P_T} > \frac{25GeV}{25GeV}$ and $|\eta| < \frac{1.1}{0.9}$.

- 5. Charge efficiency: $\epsilon_{chg} = N_{eW}^{\pm}/N_{eW}$
 - $0.4 < |Q \times E_T/p_T| < 1.8$

- Small fraction of the e^W tagged by the current algorithm found not to match the true e^W .
- This effect appears at the tracking selection stage as the code is set up at the moment.

Efficiency (η)

-1

Comparison to Run 11+12+13

- Efficiency of e^{W+} in Run 17 seems to be systematically lower than e^{W-} by ~3% on average.
- Could be due to the kinematic cut ($E_T > 25 GeV$) that was taken out for this study.

Efficiency (E_T)

Efficiency of E_T^{away}

- E_T^{away} cut varied to identify "optimal" value.
 - Found to intrinsically discriminate high $E_T e^{W\pm}$.
 - Requires further study on background rejection performance.

8

Efficiency (p_T)

p_T distributions ($|\eta| < 1.0, W^-$)

 $-1.0 < \eta < 0$

 $0 < \eta < +1.0$

$p_T - \eta$ distribution

11

Non-linerity in $p_{T,true}/p_T$

Determining $p_{T,true}$ binning

12/9/20

Jae D. Nam

Determining $p_{T,true}$ binning

Summary

- Efficiency study
 - Much of the issues are resolved after bug-fixing.
 - Discrepancies with previous results (Run11+12+13, η).
 - First test will be to include the E_T cut back in.
 - The higher E_T behavior in $e^{W\pm}$ tagging was found to originate from E_T^{away} selection cut.
 - Further study required to determine "optimal" value.
 - Reasonable results when plotted against p_T .
- W^{\pm} ratio in p_T bins.
 - Current binning scheme aims to distribute statistics so that each p_T/η bin would have about the same statistics.
 - ~10% statistical uncertainty in W^- in each bin expected, using the proposed binning.
- Next step
 - Determine $p_{T,true}$ binning scheme \rightarrow response matrix.
 - Same binning throughout all η ?
 - Number of bins?
 - Suggestions from the community will always be much appreciated.

Efficiency (p_T)

Efficiency

• The total efficiency reflects the sum of five different contributions within the kinematic region $E_T > 25 GeV$ and $|\eta| < 1.1$.

Jae D. Nam

- 1. Trigger efficiency: $\epsilon_{trg} = N_{trg}/N_{gen}$
 - lbitET triggered
- **2.** Vertex efficiency: $\epsilon_{vtx} = N_{vtx}/N_{trg}$
 - $Rank_{vtx} > 0$ &&
 - $|Z_{vtx}| < 100 cm$ &&
 - $\left|Z_{vtx}^{rec} Z_{vtx}^{gen}\right| < 2cm$
- 3. Tracking efficiency: $\epsilon_{trk} = N_{trk}/N_{vtx}$
 - Vertex with non-zero electron track &&
 - $p_T^{trk} > 10 GeV$
- 4. Tagging efficiency: $\epsilon_{tag} = N_{eW}/N_{trk}$
 - Track matched to a cluster
 - $E_T^{cluster}/E_T^{near} > 0.82$
 - $p_{T,balance} > 16 \, GeV$
- 5. Charge efficiency: $\epsilon_{chg} = N_{eW}^{\pm}/N_{eW}$
 - $0.4 < |Q \times E_T/p_T| < 1.8$

12/8/20

Efficiency in E_T

Efficiency p_T

Efficiency of E_T^{away} cut

12/8/20

Efficiency of E_T^{away} cut

2

Overview

- Full production of st_W and embedding
 - $\sim 332 \ pb^{-1}$ (2542 / 2691 runs) analyzed at the moment.
 - Uses final EMC calibration (P20ic).
 - EMC gain correction estimated with Z mass peak has **not** been included.
 - TPC sector 20 excluded.

$E_T(W^+)$

$\boldsymbol{E_T}\left(\boldsymbol{W}^{-}\right)$

MC quantities (W^+)

STAR

T

MCeleEta2D

STAR

Efficiency (η)

Efficiency (Z_{vtx})

Efficiency (p_T)

Summary

- Production P20ic is complete.
 - Relatively good agreement between MC and data.
 - Wider Jacobian peak in data.
 - Good matching between true and reconstructed quantities.
- Efficiency study
 - Expected small efficiency correction in the barrel η bins.
 - Systematic efficiency difference between W^{\pm} with non-zero slope in lepton- p_T .
 - Seems to come at the trigger selection stage.
- To-do list
 - Endcap measurement
 - Systematic uncertainties

