Preliminary Request: W⁺/W⁻ ratio analysis STAR Run 2017

Jae D. Nam

Temple Univ.

Overview

- Run 17 and 11-13 consistency check (efficiency & R_W)
- Systematic effect from BEMC gain correction
- Graphics on the final pictures

2

Consistency check (R_W)

- Chi2 test shows that Run 17 and 11-13 are consistent
 - $X^2/N_{dof} = 11.67/7 = 1.67 \ (p = 0.11)$
 - X^2/N_{dof} (+syst) = 1.5
- No significant trend in η has been found.

Consistency check (ϵ)

- The biggest difference is seen at the vertexing stage.
 - In Run 13, TPC 20 effect is seen at the vertexing stage, while this happens at tracking stage in Run 17.
 - Possibly due to change in truth \rightarrow tagged matching scheme.
 - About ~15% improvement in vertex efficiency
 - No change has been made to the vertex selection.
 - Rank > 0, $|z_{vtx}| < 100 \, cm$
 - Improvements in vertex finder?
 - Discrepancy in Trigger efficiency is due to the change in kinematic limits put at $|\eta| < 1 \rightarrow 0.9$

• δ_{BEMC} was obtained by comparing R_W before and after applying the gain correction.

				<u>.</u>	
η -bin	σ^+/σ^-	δ_{stat}	δ_{syst}	δ_{BEMC}	$\delta_{syst+BEMC}$
1	2.42	0.24	0.04	0.16	0.17
2	3.63	0.23	0.05	-0.13	0.14
3	5.06	0.36	0.10	0.13	0.17
4	6.73	0.54	0.20	0.30	0.36
5	6.01	0.43	0.18	0.24	0.30
6	5.75	0.43	0.17	-0.01	0.17
7	3.84	0.25	0.12	0.07	0.14
8	2.40	0.23	0.05	-0.03	0.05
				5ž	

• In many case, the newly-introduced δ_{BEMC} dominates all the other sources of systematic uncertainties.

W^{-}	N _{dat}	$N_{Z,\tau}$	N _{QCD}	N _{EEMC}	N _{BG}	N _{W,dat}
	1.07	1.00	2.27	1.33	1.31	1.02
	1.06	1.00	1.47	1.25	1.12	1.05
	1.03	1.00	1.78	0.92	1.05	1.02
N _{nocor}	1.01	1.00	1.11	1.15	1.05	1.00
N _{nominal}	1.02	1.00	1.50	1.52	1.12	0.99
	1.05	1.00	1.51	0.85	1.07	1.04
	1.04	1.00	1.33	2.08	1.17	1.01
	1.10	1.00	2.21	1.91	1.41	1.04
W^+	N _{dat}	$N_{Z,\tau}$	N _{QCD}	N _{EEMC}	N _{BG}	N _{W,dat}
	1.09	1.00	5.30	1.00	1.08	1.09
	1.02	1.00	1.01	1.41	1.15	1.01
	1.05	1.00	1.26	1.41	1.13	1.05
N _{nocor}	1.04	1.00	0.82	1.11	0.99	1.04
N _{nominal}	1.03	1.00	0.83	1.64	1.05	1.03
	1.03	1.00	0.92	1.12	1.00	1.03
	1.04	1.00	1.31	1.47	1.12	1.03
	1.06	1.00	1.90	1.38	1.25	1.03

	R _W
	1.07
	0.96
	1.03
N _{nocor}	1.04
N _{nominal}	1.04
	1.00
	1.02
	0.99

- We expect the number of W candidates from data increase when excluding the gain correction.
- No change in $Z \rightarrow ee$ and $W \rightarrow \tau \nu$ as expected.
- Change in QCD background is larger in W^- than in W^+ .

- Change in QCD background always increase the $R_W^{no \ gain}/R_W^{nominal}$.
 - W^+ is more resistant to the rightward shift in E_T from data than W^- .
- Change in EEMC background has "random" effect.
- Overall,
 - Data only. : 0-3%
 - Data + Z, τ . : 1-4%
 - Data + Z, τ + EEMC : 1-5%
 - Data + Z, τ + EEMC + QCD : 0-7%

Preliminary request 1

9

Preliminary request 2

STAR

Preliminary request 3.a

Preliminary request 3.b

Preliminary request 3.c

Charge separation

15

STAR

STAR

Motivation

- The unpolarized sea quark ratio \bar{d}/\bar{u}
 - Traditionally measured via Drell-Yan
 - Conflict between measurements around the valence region.
 - STAR kinematics at the mid-rapidity $(|\eta| < 1)$ is sensitive to the region 0.1 < x < 0.3.
 - Can be further stretched to 0.06 < x < 0.4 with EEMC.
- *W* production at STAR
 - Sensitive to ud
 (W⁺) and ud
 (W⁻) at leading order;
 - The cross section ratio $\sigma_{W^+}/\sigma_{W^-}$ can be used to probed \bar{d}/\bar{u} ;

$$\sigma_{W^+} / \sigma_{W^-} \approx \frac{u(x_1) \,\bar{d}(x_2) + u(x_2) \,\bar{d}(x_1)}{\bar{u}(x_1) \,d(x_2) + \bar{u}(x_2) \,d(x_1)}$$

Data and MC

- Data
 - P20ic (w/ final BEMC calibration)
 - $\int L dt = 347 \ pb^{-1} \ (2604 \ runs)$
- MC
 - Official samples: $(W \to ev, Z \to ee)$
 - Private sample: $(W \rightarrow \tau \nu)$
- Detector space
 - TPC sector 20 has been masked out for both MC and data.
 - The current measurement focuses on the barrel region $(|\eta| < 1)$.

- EMC calibration gains are corrected at the analysis stage based on Z mass mean.
 - For Run 17, a correction of -4.2% has been applied to BEMC gain for data.
 - Larger than the uncertainty of the BEMC calibration ($\sim 3\%$).

- It was found that this different is resistant to the mass window of the fit.
 - Immediate solution for this analysis may be to observe the difference in the cross section ratio measurement with and without the gain correction.

W candidate selection

- Kinematic selection
 - $25 < E_{T,cl}/GeV < 50$
 - $|\eta| < 1$
 - $p_{T,trk} > 10 \text{ GeV}$
- Event selection
 - Large imbalance in p_T due to final state neutrino.
 - $\vec{p}_{T,bal} = -\sum \vec{p}_T$

•
$$sp_{T,bal} = \vec{p}_{T,bal} \cdot \frac{\vec{p}_{T,cl}}{E_{T,cl}}$$

- Electron isolation
 - Energy confined in a small space.

•
$$E_{T,cl} = E_T^{2 \times 2}$$

•
$$E_T^{near} = E_{T,jet}^{\Delta R < 0.7}$$

Vertex	Rank > 0				
	z < 100 cm				
Track	$p_T > 10 GeV$				
	$N_{hits} > 15$				
	$N_{hits}/N_{pos} > 0.51$				
Electron	$E_T^{2 \times 2} / E_T^{near} > 0.82$				
	$E_T^{2 \times 2} / E_T^{4 \times 4} > 0.96$				
W	$\left Q \times \frac{E_T}{p_T} \right < 3.0$				
	$sp_{T,bal} > 16 GeV$				
	$25 < E_{T,cl} < 50 GeV$				
	$E_{T,away} < 11 GeV$				

Cross section ratio

• Cross section of a process is often expressed as:

$$\sigma = \frac{N}{\int L \, dt} = \frac{N_{obs}}{\epsilon \int L \, dt}$$

• In the *W* cross section ratio measurement, the ratio reduces to:

$$\sigma_{W^+}/\sigma_{W^-} = \frac{\epsilon^-}{\epsilon^+} \cdot \frac{N_{obs}^+}{N_{obs}^-} = \frac{\epsilon^-}{\epsilon^+} \cdot \frac{N_{sig}^+ - N_{bg}^+}{N_{sig}^- - N_{bg}^-}$$

• where ϵ represents the sum of the efficiencies of our selection process.

$$\epsilon = \epsilon_{trigger} \times \epsilon_{vertex} \times \epsilon_{tracking} \times \epsilon_{tagging}$$

• N_{bg} represents the sum of all remaining background contributions.

$$N_{bg} = N_{W \to \tau\nu} + N_{Z \to ee} + N_{QCD} + N_{EEMC}$$

QCD Background

- QCD background has been estimated by;
 - Shape: W candidates that fail $sp_{T,bal}$ cut
 - Normalization: Discrepancy between data and MC (incl. BG) within a window $16 < E_{T,cl} < 21$.
- Systematics
 - Background description δ_{QCD}^{bg} :
 - The uncertainty associated with the QCD background description in terms of its shape and normalization has been tested by varying $sp_{T,bal}$ cut from 5 *GeV* to 25 *GeV* (nominal = 16 *GeV*) and the upper limit of $E_{T,cl}$ window from 18 *GeV* to 25 *GeV*.
 - Missing dijet δ_{QCD}^{dijet} :
 - Dijet events are neglected when one of the two jets is outside the detector acceptance region.
 - A Pythia study was done to estimate the effect.

Systematics (QCD Background)

STAR

W⁺ (η: -0.8↔-0.5, p_⊥/GeV: 0↔100)

 $\cdots W \rightarrow e v MC$

Second EEMC

 $W \to \tau ~\nu ~MC$

 $Z \rightarrow ee MC$

••••• $W \rightarrow e v MC$

Second EEMC

 $W\to\tau ~\nu~MC$

 $Z \to ee \; MC$

450 r

400

350

300

250

200

150

100

50 F

90

450 r

400

350

300

250

200

150

100

50

90

15 20

 W^{+} (η : -0.25 \leftrightarrow 0, p_{-} /GeV: 0 \leftrightarrow 100)

----- STAR Data 2017

 $\cdots W \rightarrow e v MC$

450 r

400

E_T (GeV)

Results

n	
•	
	e

η -bin	σ^+/σ^-	δ_{stat}	δ_{syst}
$-1.0 < \eta < -0.8$	2.42	0.24	0.04
$-0.8 < \eta < -0.5$	3.63	0.23	0.05
$-0.5 < \eta < -0.25$	5.06	0.36	0.10
$-0.25 < \eta < -0.0$	6.73	0.54	0.20
$0 < \eta < 0.25$	6.01	0.43	0.18
$0.25 < \eta < 0.5$	5.75	0.43	0.17
$0.5 < \eta < 0.8$	3.84	0.25	0.12
$0.8 < \eta < 1.0$	2.40	0.23	0.05

Systematic uncertainties

η bin	1	2	3	4	5	6	7	8	
$\delta_{\Delta\epsilon}(\%)$	0.3	1.0	0.5	1.0	1.0	0.4	0.7	0.4	存 1% was used
δ^{high}_{BEMC} (%)	0.2	0.0	0.0	0.0	-0.1	0.0	-0.4	0.3	
δ^{low}_{BEMC} (%)	0.2	0.3	-0.3	-0.2	-0.2	-0.3	0.0	0.5	
$\delta^{bg}_{QCD} (\%)$	0.3	0.3	0.6	0.7	0.5	0.6	0.6	0.5	
δ^{dijet}_{QCD}	$44\% \text{ of } N_{bg}^{QCD}$								

- EMC calibration gains are corrected at the analysis stage based on Z mass mean. ٠
 - For Run 17, a correction of -4.2% has been applied to BEMC gain for data. ٠

STAR

