W⁺/W⁻ ratio analysis STAR Run 2017

Jae D. Nam

Temple Univ.

Recap

- *RW* measurement in the endcap region.
 - Incorrect EEMC calibration.
 - Without charge/efficiency corrections.
 - Without systematic uncertainty.

- Efficiency ratio.
 - Correct EEMC calibration.
 - Computed without the E_T cut.
 - Only consider L2EW triggering events.
 - 20~30% charge dependence.

W tagging with EEMC calibration

Charge correction

STAR

Efficiency correction

 L2BW triggering events were also considered in order to alleviate some of the asymmetry seen at the triggering stage.

Efficiency correction

E_T distirbutions of $W \rightarrow ev$ Embeddings

• Electron tracks projected onto the EEMC to obtain cluster- E_T .

Systematic uncertainty

- Charge correction method
 - Evaluated at the difference in *C_{charge}* between 4-Gaus and 2-Gaus methods.
- Charge selection
 - The lower and upper bounds of charge selection cut ($0.4 < |Q \times E_T/p_T| < 1.8$) was varied by ± 0.3 .
 - The systematic uncertainty was taken from the largest deviation from the nominal value.

x _{low}	0.4	0.1	0.7	0.4	0.4	Largest
x_{high}	1.8	1.8	1.8	1.5	2.1	Difference
4-Gaus	0.95	0.87	1.11	0.89	0.97	0.15
2-Gaus	1.06	1.08	1.06	1.05	1.05	0.01

QCD background description

- Systematic uncertainty estimated by varying the upper R_{ESMD} limit for QCD background from 0.4 to 0.55 in steps of 0.01 (shape) and sp_{T,bal} upper limit from -4 GeV to 22 GeV in steps of 2 GeV (normalization).
- The value was taken from the RMS of QCD contribution.

Results

