Progress Report

Jae D. Nam

Temple Univ.

Z mass shift

- Z mass study in relation to dataembed mismatch continues.
- Validity of BEMC calibration and data description by embedding tested.
 - Long-waited M_Z width study with MC Pythia.
 - Additional dependence of M_Z originating from BEMC calibration.

BEMC Gain Uncertainty with Pythia

- A BEMC gain uncertainty due to detector resolution effect inserted in to Pythia electrons.
 - Pythia electrons treated as a real track with momentum = particle momentum originating from pythia event vertex.
 - These tracks projected to BEMC surface via THelix.
 - Energy varied by a certain fraction based on Gaus distribution.
 - 0-20% across 40 samples
 - *i* = initial seed {0,...,40}
 - *j* = BEMC cell ID {0,...,4799}
 - $k = \text{final seed} = 10000 \times i + j$
 - w = Gaussian width = 0.005 * i
- The randomized Pythia Z mass is compared to data and embedding.
 - $\sim 4\%$ correction to data applied.
 - ~2 GeV shift in Z mass peak compared to embed & corrected data.
 - Since each bin in the histogram = 2 GeV, comparison was performed with bin m in data and MC to m + 1 in Pythia.

Results

- Constant 2 GeV shift between data/embed vs Pythia
- $\rightarrow X^2$ calculated with the adjacent bin (bin width 2GeV).

Data-Embd Comparison

Time Dependence

- Each data point represents statistics over
- Breakdown of Run 2017 in BEMC
 - P1 = Day 53 59 (~Bin 1, Day 50 59)
 - $P2 = Day 60 103 (\sim Bin 2-5, Day 60 99)$
 - $P3 = Day 104 149 (\sim Bin 6 10, Day 100 150)$

 χ^2 / ndf

Prob

p0

p1

120

- $> 2\sigma$ time dependence in data.
- **BEMC** calibration (period separation scheme) may have overcorrected the time

100

0.08979 / 1

 1.287 ± 0.09966

 -0.00565 ± 0.001678

0.7645

60

Time Dependence (cont'd)

- Detailed look at the time-dependence.
- E_Z and M_Z shows similar (> 2σ) time dependence.
 - Run 17 spans over ~100 days, corresponding to ~4% shift in M_Z and ~6.5% shift in E_Z .
- BEMC relative uncertainty study may need to be revisited.

Charge Selection Dependence

- $|Q \times E_T / p_T|$ window varied in 20 steps.
 - Lower limit: $0.95 \rightarrow 0.00$
 - Upper limit: $1.15 \rightarrow 4.00$
- No significant charge dependence found.

- No strong topology dependence.
- η-binning follows the one used for
 W measurement.
- [-1, -0.8, -0.5, -0.25, 0, 0.25, 0.5, 0.8, 1]
- No strong η_e dependence.

Summary & Outlook

- Summary
 - The relative gain uncertainty in BEMC calibration has been tested with the help of Pythia electrons.
 - $\delta_{BEMC,rel} \sim 7\%$, although time-dependent evaluation may reduce the magnitude.
 - The $E_Z(=E_{e+}+E_{e-})$ suggests that the mismatch between data and embed may be as large as 7%.
 - > 2σ time-dependence in both E_Z and M_Z found.
 - Possible overcorrection from BEMC calibration.
 - But, why appear at high momentum? Or is it also seen in low momentum?
- Outlook
 - Time-dependent BEMC gain correction for W Jacobian peak
 - \rightarrow Time-dependent systematics (BEMC uncertainty) evaluation.

ZDCx

- Some (~2σ)
 ZDCx
 dependence is seen.
- ZDC rate highly time correlated in Run ID < 600.
- ZDC depedence in the time independent (ID > 600) period will be tested.

Jet producing subprocesses

- Jet producing subprocesses (right) has little to no effect.
- $ff \rightarrow \gamma^*/Z^0$ (default, left+right)
- $ff \rightarrow g(\gamma^*/Z^0)$ (right)
- $fg \rightarrow f(\gamma^*/Z^0)$ (right)

Electrons

~4% correction not applied in data Charge cut $|Q \times E_T / p_T| < 3$

DIS 2023

- Next step for STAR W measurement is publication.
- Publishing the analysis by March 2023 while there still is an on-going investigation seems difficult.
- ZEUS analysis, especially preliminary release of q_T and $\pi \Delta \phi$ measurements seems much more plausible.

Results

M_{Z,pythia,rand} (GeV)

Results

 $\sim 4\%$ correction not applied in data

STAR

21

Charge distribution

• Charge $(|Q \times E_T/p_T|)$ dependence of Z mass will be investigated.

STAR

