W^+/W^- cross-section ratio with STAR Run 2017

Jae D. Nam

Temple Univ.

Recap

Matt's follow-up study

Figure 13: The CMS rapidity distributions for production of an on-shell W^- boson (left) and on-shell W^+ boson (right) at the LHC, at LO, NLO, and NNLO, for the MRST PDF sets. Each distribution is symmetric in Y; we only show half the rapidity range in each case. The bands indicate the common variation of the renormalization and factorization scales in the range $M_W/2 \le \mu \le 2M_W$.

- STAR publication based on Run 2011-2013 is well described by FEWZ NLO calculation **without** including jet production process $p + p \rightarrow W + jet$
- Issue raised by MSHT (T. Cridge et al.) on justification of "no-jet" cut (without this cut, cross section differs by ~30% for W^{\pm} and Z)
- De Florian and Vogelsang found ~30% contribution from higher order correction indeed possible at STAR kinematics
- STAR Run 2011-2013 publication is not just a one-off case, STAR Run 2017 data also consistent with publication.

2

Run 17 W cross section

STAR W Measurement

- At the reconstruction-level, **Pythia** describes **data** (STAR Run 11-13, 17) well (MC scaled to data lumi, $L_{MC} = L_{data}$)
- Cross section extracted by

* M = Number of reconstructed events * N = Number of true events

•
$$M_{MC} \sim M_{data}$$
,

$$\sigma_{data} \sim \frac{N_{MC} \left(=\sigma_{MC} \times L_{MC}\right)}{L_{data}} = \sigma_{MC}$$

Jae D. Nam

Comparison Pythia6 + PDFsets (W+)

Comparison Pythia6 + FEWZ NLO

Comparison Pythia6 + FEWZ NLO

$d\sigma/d\eta_e$ (Pythia, FEWZ NLO)

- Comparison of different PDF sets with Pythia 6 + FEWZ NLO
- FEWZ NLO = W + jet Also shown is NLO with no-jet requirement (this is what is compared to data in publication: PRD 103 (2021) 1, 012001)
- FEWZ NLO + 0J consistent with Pythia (with STAR data)

Comparison Pythia6 + FEWZ NLO

Experimental Origins

- Few different aspects from the experimental side that could have caused $M_{data} \sim M_{MC} \rightarrow \sigma_{data} \sim \sigma_{FEWZ,LO}$
 - Effects arising from Calorimetry (BEMC)
 - Effects arising from Tracking (TPC)
 - Bremsstralung
 - Coding Error? <--

No significant effect found

• Event reconstruction removing higher order effect?

Review of Event Reconstruction

- 1) A high momentum track is identified (p > threshold)
- 2) Energy cluster is formed (2×2 towers, each covering 0.05×0.05 in $\eta \times \phi$; cluster: 0.1×0.1)
- 3) Isolation requirement $(E_T^{2\times 2}/E_T^{\Delta R < 0.7} \sim 1, E_T^{2\times 2}/E_T^{4\times 4} \sim 1)$
- 4) Backward (neutrino direction) energy flow requirement $(E_T^{\Delta\phi\sim\pi} < \text{threshold})$
- 5) Energy imbalance $(p_{T,bal})$ $(\hat{p}_{T,e} \cdot \sum [\vec{E}_T \text{ and } \vec{p}_T] > \text{threshold})$

Review of Event Reconstruction

- 1) A high momentum track is identified (p > threshold)
- 2) Energy cluster is formed (2×2 towers, each covering 0.05×0.05 in $\eta \times \phi$; cluster: 0.1×0.1)
- 3) Isolation requirement $(E_T^{2\times 2}/E_T^{\Delta R < 0.}) \sim 1, E_T^{2\times 2}/E_T^{4\times 4} \sim 1)$
- 4) Backward (neutrino direction) energy flow requirement $(E_T^{\Delta\phi\sim\pi})$ < threshold)
- 5) Energy imbalance $(p_{T,bal})$ $(\hat{p}_{T,e} \cdot \sum [\vec{E}_T \text{ and } \vec{p}_T] > \text{threshold})$

Review of Event Reconstruction

($\hat{p}_{T,e} \cdot \sum [\vec{E}_T \text{ and } \vec{p}_T] > \text{threshold}$)

- Most of the MC events are single jet events (containing electron)
- Most of the data events are dijet events (QCD)
- Most of the dijet events in data are removed after ETnear+ETaway cut

Looking at Jets (W+ only)

•
$$\Delta X = X_{jet} - X_{e,cand}$$

- Most of data events have back-to-back topology between electron and jet
- Most of the events with back-to-back topologies are removed by ETaway cut.

Looking at Jets (W+ only)

- Most of the events with back-to-back topologies are removed by the ET away cuts.
- This cuts does improve data-MC matching
- How well does Pythia describe jets at the truth level, compared to FEWZ?

Jets: Pythia vs FEWZ NLO

- Only looking at leading jets in Pythia to avoid multiplicity effects
- Pythia overestimates jet associated W events
- Shape is described relatively well

\rightarrow Questions

 (albeit some scaling factor) LO+PS jet describes NLO jet very well
 → Where is the ~30% shift coming from?
 → What do other people do?

LHC Measurements

ATLAS, PLB 854 (2024) 138725

- ATLAS $W \rightarrow ev$ reconstruction method similar to STAR
- E_T^{near} cut with variable cone size
- Without E_T^{away} cut

- Chooses a specific m_T^W region
- MC prediction based on NLO+PS models, SHERPA and POWHEG+Pythia8
- NLO+PS models describe LHC data very well

SHERPA

- SHERPA 2.2.16 NLO+PS event generator
 - <u>https://sherpa.hepforge.org/doc/SHERPA-MC-2.2.16.html</u>
 - Uses MEPS@NLO jet merging technique
 - Matrix elements computed by BlackHat
 - LHC W+jets prediction from BlackHat+SHERPA: <u>https://arxiv.org/pdf/1005.3728</u>
- Test sample generated using the same tune as the SHERPA's W+jets study (CT10 PDF set)

1/30/25

Jae D. Nam

Pythia vs FEWZ vs SHERPA

- Integrated cross section from SHERPA agrees with FEWZ NLO
- The shape does not describe Pythia/FEWZ \rightarrow Proper tuning needed

TAR

Pythia vs FEWZ vs SHERPA vs CHE

- 2nd opinion from CHE (NLO calculator)
- CHE with MRST2002NLO PDF set agrees well with FEWZ, • given that the two currently use different PDF sets

1/30/25

STAR

Questions

- Performance of pQCD describing DY with very soft jets, $p_T > 3.5 \ GeV$?
- Performance of pQCD in this scale? (describes LHC within 5%)
- What is the nature of $\sigma^{Pythia} \sim \sigma^{pQCD,LO}$?
- Can we trust Pythia with ETnear, Etaway (+ pTbal with rather soft jets)?

CMS Preliminary			201 pb ⁻¹ (13 TeV)
Measured	 NNPDF3.1 CT18 	★NNPDF4.0 ◆MSHT20	Measured \pm unc Theory \pm unc (NNPDF3.1)
$W^{*}\!\!\rightarrow l^{+}\!\nu$			12130±10 _{stat} ±100 _{syst} ±200 _{lum} pb 11540 ⁺¹⁰⁰ ₋₁₃₀ pb NNPDF 3.1
Ŵ→Í⊽			8910±10 _{stat} ±80 _{syst} ±150 _{lum} pb 8530 ₋₁₀₀ pb
$W^{\pm}\!\!\to f^{\pm}\!\nu$			21040±10 _{stat} ±180 _{syst} ±360 _{lum} pb 20070 ₋₂₃₀ pb
Z→I [†] Í			2006±4 _{stat} ±18 _{syst} ±33 _{lum} pb 1940 _{*15} pb
$W^* \rightarrow l^+ v / W^- \rightarrow l$	⊽		1.3622±0.0018 _{stat} ±0.0094 _{syst} 1.3536 ^{+0.0050} _{0.0044}
$W^{\pm} \rightarrow I^{\pm} v / Z \rightarrow I^{\pm}$	í		10.489±0.024 _{stat} ±0.083 _{syst} 10.341 ^{t0.043}
0.9		1	1.1
	Theory / Measured Ratio of σ_{13TeV}^{tot}		

STAR

20

3/12/25

Backup

STAR

Pythia vs FEWZ NLO

- There are some depression around $dR \sim \pi$, but these do survive and should be accounted for by the efficiency correction
- Conclusion: It's not easy to estimate the fraction of higherorder contributions that get cut out by our selection method.

