W^+/W^- cross-section ratio with STAR Run 2017

Jae D. Nam

Temple Univ.

Recap

- New kinematic quantities are obtained as
 E
 (A
 E
 - $E_{T,away,+} \rightarrow E_{T,away,+} + (\hat{p}_{T,+} \cdot \hat{p}_{T,-} \cdot E_{T,-}^{2\times 2}) + (\hat{p}_{T,+} \cdot p_{T,-})$
 - signed- $p_{T,bal,+} \rightarrow$ signed- $p_{T,bal,+} + (\hat{p}_{T,+} \cdot \hat{p}_{T,-} \cdot E_{T,-}^{2 \times 2})$
- Signed-pTbalance is reconstructed with jets (min-pT = 3.5 GeV)
 → lingering soft jets may increase spTbal slightly (< 3.5 GeV for some events)
- In the Mock-W study with Z, high- p_T jets driven by p_T smearing of electrons resulted in low signed $p_{T,bal}$ tail
- This resulted in a large mismatch between data and MC under the spTbal cut (signed- $p_{T,bal} < 16 \ GeV$), overestimating difference in the spTbal efficiency

Jae D. Nam

Jets in Mock-W sample

- All/QCD jets
 - StJetFinder, Anti-kT, R = 0.6, min-pT = 3.5 GeV
 - $p_{in} = p_{TPC}$, $E_{in} = E_{EMC,SM} p_{TPC}$ + mip correction
 - Remove tracks with $p_T > 25 \; GeV$ and the surrounding towers
 - $\Delta R_{e,jet} > 0.7$
 - Run 17 event selection \rightarrow Run 13 (electron isolation)
 - High pT ($\sim 40 \ GeV$) removed after applying electron isolation

Jet comparisons

Good description of jet by MC

spTbal cut efficiency

- Low spTbal tail with the new scheme needs to be understood
- Other than this no significant signal below signed- $p_{T,bal} < 16 \ GeV$

6/3/25

Low signed- $p_{T,bal}$ tail

Low signed- $p_{T,bal}$ tail

- Low pT tail seems to be mostly consisted of jets driven by unrejected electrons and the subleading jets
- No "real" signal below signed- $p_{T,bal} < 16 \ GeV$
- \rightarrow **No mis-estimation** of signed- $p_{T,bal}$ selection from mock W study

Conclusion from Mock-W study

- Mock-W sample from Z data with the opposite electron blinded
 - New jet definition rejecting (some) contribution from the opposite electron
 - No "real" signal (or mismatch with MC) below the spTbal cut < 16 GeV
- Reproducing the result with W data
 - spTbal and ETaway distributions
 - Underlying jets
 - Potential mismatch between data & MC

Reproducing Mock-W results with W

With ETaway selection (W+)

Without ETaway cut

- $E_{T,e} > 25 \; GeV$
 - No ETaway cut (nominal cut: $E_{T,away} < 11 \text{ GeV}$)
 - Presence of high ETaway & low signed pTbal in data

- Without ETaway cut (ETaway < 100 GeV), data show low-spTbal tail, similar to mock-W
- Probably is actual Z + dijet QCD

Jet distributions (N_{jet}, Data, W+)

• Second peak appearing at signed- $p_{T,bal} \sim 0$ with relaxed ETaway cut

Jet distributions (N_{jet}, MC, W+)

Jet distributions ($\Delta \phi_{e,jet}$, Data, W+)

- Second peak appearing at signed- $p_{T,bal} \sim 0$ with relaxed ETaway cut
- Highly back-to-back

6/3/25

Jet distributions ($\Delta \phi_{e,jet}$, MC, W+)

Jet distributions ($p_{T,jet}$, Data, W+)

- Second peak appearing at signed- $p_{T,bal} \sim 0$ with relaxed ETaway cut
- Highly back-to-back, one leading jet (Z or dijet) and subleading jet

TAR

Jet distributions ($p_{T,jet}$, MC, W+)

Signed- $p_{T,bal}$ and Jet p_T (W+)

• Looking at signed- $p_{T,bal} < 16 \; GeV$, $p_{T,jet} > 16 \; GeV$

Signed- $p_{T,bal}$ and Jet p_T (W+)

- Symmetric (QCD/Z) and asymmetric (possible $W \rightarrow e$ or $W \rightarrow \tau$) fits
- No justification behind choice of fit function (Gaus, Exp) Jae D. Nam

19

Signed- $p_{T,bal}$ and Jet p_T (W+)

• Asymmetric contribution can be as large as $\sim 5\%$ of signal

Signed- $p_{T,bal}$ and Jet p_T (W-)

Similar observation with W-(Asymmetric contribution can be as large as $\sim 5\%$ of signal)

6/3/25

Summary

- Mock W study with new QCD jet definition suggests **no significant** mis-estimation of signed- $p_{T,bal}$ cut
- Similar study was repeated with W data and found that the mis-estimation effect can only be as large as $\sim\!5\%$
- \rightarrow No significant contribution from signed- $p_{T,bal}$ and $E_{T,away}$
- The following lines will be added In the text,
 - Emission of soft and hard gluons simulated with LO+PS models, such as Pythia, is subject to uncertainties originating from the underlying assumptions behind parton showering algorithms, and cannot be trusted entirely.
 - The resulting misdescription of soft and hard QCD radiation may appear as an incorrect estimation of the reconstruction efficiency in equation (X).
 - The inefficiency of selection criteria based on the activity within a large area of the detector, such as $E_T^{\Delta R < 0.7}$ and $E_T^{\Delta \phi \sim \pi}$, and the description of reconstructed jets, such as **signed**- $p_{T,bal}$, have been re-evaluated using reconstructed W and Z samples from data without these requirements.
 - The impact of the misestimation of the reconstruction efficiency to the overall cross section was found to be less than 5% and taken as a **systematic uncertainty**.

