Update on EM-Jet A_N in FMS and EEMC

First Look at Run 17 Dataset Preliminary Request for Run 15 Results

Latif Kabir

August 11, 2021

イロト イボト イヨト イヨ

Latif Kabir

Update on EM-Jet A_N in FMS and EEMC

August 11, 2021 1 / 30

э

EM Jet A_N with FMS and EEMC

- $\bullet \ p^{\uparrow} + p \rightarrow \text{EM-jet} + X$
- Extract A_N as a function of EM-jet p_T, energy and photon multiplicity.
- EM-jet in FMS and EEMC

• Dataset:

- Run 15(200 GeV pp trans)
- Run 17 (510 GeV pp trans)

• Data-stream:

-FMS-stream (For FMS EM-jet) - Physics-stream (For EEMC

EM-jet)

• Triggers:

- Small BS, Large BS and FMS-JP Triggers (For FMS EM-jet)
- EHT0, JP and MB triggers (For EEMC EM-jet)
- Veto on LED and abort gap

Jet Reconstruction

- ~20% of total Run 17 dataset (Day 74 -Day 87)
- Initial calibration from Minghui
- FMS hot channel masking before reconstruction. → No additional masking
- Exclude highly bit-shifted FMS channels
- Vertex z priority: TPC, VPD, BBC
- FMS points as input for Anti- k_T
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$ (For FMS EM-Jet)
- Jet *p*_T > 2.0 GeV/c
- -80 cm $< V_z <$ 80 cm

Run 17 EM-jet QA: EM-jets and Trigger Types

э.

イロト イポト イヨト イヨト

Run 17 EM-jet QA: Photons Multiplicity and Vertex

3

イロト イポト イヨト イヨト

Run 17 EM-jet QA: Jet Energy

2

イロト 不得 トイヨト イヨト

Run 17 EM-jet QA: Jet p_T

UE dPt [GeV/c]

э.

UE corrected Jet Pt [GeV/c]

・ロト ・ 同ト ・ ヨト ・ ヨト

Run 17 EM-jet QA: Angular Distribution

- * ロ * * @ * * ヨ * * ヨ * の < ?

August 11, 2021

EM-Jet *A_N* **Extraction**

• Cross-ratio formula to calculate A_N

$$\epsilon pprox rac{\epsilon = PA_N \cos(\phi)}{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} - \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}} \sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}$$

• Advantages: Cancels systematics, such as luminosity and detector effects

EM-Jet A_N Extraction

Allows extraction of both physics asymmetry and beam asymmetry

3

イロト イポト イヨト イヨト

Run 17 FMS EM-Jet A_N

- About 20% of Run 17 data
- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- Error bars statistical only

August 11, 2021 11 / 30

Comparing Run 17 FMS EM-Jet A_N With Run 11

- About 20% of Run 17 data
- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- 2.8 < η^{EM-jet} < 3.8
- Error bars statistical only

Comparing Run 17 FMS EM-Jet A_N With Run 15

- About 20% of Run 17 data
- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- 2.8 < η^{EM-jet} < 3.8
- Error bars statistical only

э

イロト イポト イヨト イヨ

Preliminary Request for Run 15 Results

э.

(日)

Run 15 FMS EM-jet *A_N* **Results**

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- 2.8 < η^{EM-jet} < 3.8
- Statistical and systematic error bars
- 3.46% polarization scale uncertainty not shown

Run 15 FMS EM-jet *A_N* **Results**

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- 2.8 < η^{EM-jet} < 3.8
- Error bars statistical only
- 3.46% polarization scale uncertainty not shown

Run 15 EEMC EM-jet A_N **Results**

- EHT0, JP and MB triggers
- Anti- k_T with R = 0.7
- Photon multiplicity based on EEMC tower counts
- Tower $E_T > 0.2 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- $1.0 < \eta^{EM-jet} < 2.0$
- Statistical and systematic error bars
- 3.46% polarization scale uncertainty not shown

Other Consistency Check

∃ 900

イロト イポト イヨト イヨト

Run 15 FMS EM-jet A_N Results: With vs Without Small-BS3 Trigger

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- $\bullet \ 2.8 < \eta^{EM-jet} < 3.8$
- Error bars statistical only
- 3.46% polarization scale uncertainty not shown

t-Test

• Following is the t-test output from the program R comparing asymmetries from Latif and Zhanwen for $n_{\gamma} > 0$ case:

-

イロト イボト イヨト イヨト

Materials for Preliminary Results

- Brief analysis note for the preliminary results
- Drupal page with the preliminary results

э.

イロト イポト イヨト イヨト

Backup Slides

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Run 15 FMS EM-jet *A_N* **Results**

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- $\bullet \ 2.8 < \eta^{EM-jet} < 3.8$
- Error bars statistical only
- 3.46% polarization scale uncertainty not shown

э

Image: A matrix

• • • • • • • • • • •

Run 15 FMS EM-jet *A_N* **Results**

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- $\bullet \ 2.8 < \eta^{EM-jet} < 3.8$
- Error bars statistical only
- 3.46% polarization scale uncertainty not shown

э

• • • • • • • • • • •

Analysis Details and List of Cuts

	Status / Value
1. Trigger:	
1.1. FMS Data	FMS BS and JP
1.2. EEMC Data	EHT0, JP and MB
2. Jet Reconstruction:	
2.1. FMS hot channel masking before reconstruction	Yes
2.2. Exclude highly bit-shifted channel	Yes
2.3. Fill-by-fill hot/bad channel masking	Yes
2.4(a). FMS Calibration	UCR (Chong)
2.4(b). FMS points as input for Anti- k_T	Yes
2.4(c). FMS Point: Try 1 photon fit (default is yes)	Yes
2.4(d). FMS point: Scale shower shape to 0.8 for large and 0.6 for small cells (default)	Yes
2.4(e). FMS point: Merge Small to large (default)	Yes
2.4(f). FMS point: Choose cluster categorization algorithm (default)	Yes
2.5. R for Anti- k_T	0.7
2.6. Photon energy cut	E_γ > 1.0 GeV
2.7. Jet p_T	Jet p_T > 2.0 GeV/c
2.8. Vertex z priority according to TPC, VPD, BBC	Yes
2.9. BBC slewing correction	Yes
2.10. Jet Finder Class	StJetMaker2015

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Analysis Details and List of Cuts

	Status / Value
3. Event Selection Cuts:	
3.1(a). Veto on LED	Yes
3.1(b). Veto on abort gap	Yes
3.2(a). Eta (η) range covered (FMS)	2.8 - 3.8
3.2(b). Eta (η) range covered (EEMC)	1.0 - 2.0
3.3. Vertex z cut	-80 cm < V_z < 80 cm
3.4. Trigger dependept p_T cut	Yes
3.5. Exclude bad spin status	Yes
3.6. Ring of fire cut: BBC and TOF	No
3.7. Ring of fire cut: Exclude Sm-bs3 trigger	Yes
3.8. Exclude fills with wrong spin pattern	Yes
3.9. Exclude events with x_F > 1 or E_{jet} > 100 ${\rm GeV}$	Yes

	Status / Value
4. Corrections:	
4.1. Photon energy correction	No
4.2. Jet energy correction	Yes
4.3. Jet Pt correction	Yes
4.4. Underlying event correction	Yes
4.5. Time dependent correction	No
5. A_N Extraction:	
5.1. Extraction method	Cross-Ratio Formula
5.2. Phi binning	16

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

÷

Unfolding for Event Misidentification

$$A_{N}^{1'} = p_{11}A_{N}^{1} + p_{12}A_{N}^{2} + \dots + p_{15}A_{N}^{5}$$

$$A_{N}^{2'} = p_{21}A_{N}^{1} + p_{22}A_{N}^{2} + \dots + p_{25}A_{N}^{5}$$

$$A_{N}^{5'} = p_{51}A_{N}^{1} + p_{52}A_{N}^{2} + \dots + p_{55}A_{N}^{5}$$

$$\overline{A_{N}^{\prime} = \Sigma A_{N} \Rightarrow A_{N} = \Sigma^{-1}A_{N}^{\prime}}$$

$$\Sigma = \begin{bmatrix} p_{11} & \dots & p_{15} \\ \vdots & \ddots & \vdots \\ p_{51} & \dots & p_{55} \end{bmatrix}$$

∃ 900

イロト 不得 トイヨト イヨト

Unfolding for Event Misidentification

- Solve a set of five linear equations with five variables for each energy and p_T bin
- Decompose A_N as a linear composition of A_N^i corresponding to n_i photons
- Use SVD for the unfolding procedure (e.g. TSVDUnfolding class)

• • • • • • • •

Run 15 FMS EM-jet *A_N* **Results**

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- Statistical and systematic error bars

э

イロト イポト イヨト イヨ

Comparing With Zhanwen's Results

Summary of Comparison After Matching Most Conditions:

- $n_{\gamma} = 2$ (Two photon multiplicity) case compares well for both of us
- n_{γ} > 2 case compares well for both of us
- For $n_{\gamma} > 0$ case, my asymmetries are over estimated for few points compared to Zhanwen.
- The source of the difference is attributed to: Differences in -
 - FMS gain correction
 - FMS photon and jet reconstruction
 - Analysis approaches
- The details of the comparison can found in this drupal post (Link).

イロト イポト イヨト イヨト

= nan