EM-jet A_{N} at Forward Rapidities in $\mathbf{p}^{\uparrow} \mathbf{+} \mathbf{p}$ Collisions at $\sqrt{s}=\mathbf{2 0 0} \mathbf{~ G e V}$

Preliminary Request for Run 15 Results

Latif Kabir

August 11, 2021

Abstract

Title: Transverse Single-Spin Asymmetry for Electromagnetic Jets at Forward Rapidities in $\mathrm{p}^{\uparrow}+\mathrm{p}$ Collisions at $\sqrt{s}=200$ GeV at STAR

Abstract (SPIN21):

There have been various attempts, both experimentally and theoretically, to understand the origin of the unexpectedly large transverse single-spin asymmetries $\left(A_{N}\right)$ for inclusive hadron production at forward rapidity in $\mathrm{p}^{\uparrow}+\mathrm{p}$ collisions that persist from low to high center-of-mass energies. Two proposed potential sources are the twist-3 contributions in the collinear factorization and the transverse-momentum-dependent contributions from either the initial-state quark and gluon Sivers functions or the final-state Collins fragmentation function. Jet A_{N} is sensitive to the initial state effect and can provide access to Sivers functions. A_{N} for jets of different substructures can help better understand the underlying mechanism for the observed large A_{N}. Transversely polarized $\mathrm{p}^{\uparrow}+\mathrm{p}$ collisions at RHIC are ideal to disentangle the initial and final state effects. The STAR Forward Meson Spectrometer (FMS) and Endcap Electromagnetic Calorimeter (EEMC), having pseudo-rapidity coverages of 2.6-4.2 and 1.1-2.0 respectively, can be used to detect photons, neutral pions, and eta mesons. We present preliminary results of A_{N} for electromagnetic jets in FMS and EEMC using $\mathrm{p}^{\uparrow}+\mathrm{p}$ collisions at $\sqrt{s}=$ 200 GeV where we explore the dependences of A_{N} on photon multiplicity inside the jet, jet transverse momentum, and jet energy.

PAs: Latiful Kabir ${ }^{1}$, Chong Kim, Ken Barish² ${ }^{2}$, Mriganka M Mondal
${ }^{1}$ Latiful.Kabir@ucr.edu
${ }^{2}$ Kenneth.Barish@ucr.edu (Supervisor)

Transverse Single-Spin Asymmetry $\left(A_{N}\right)$

- Unexpected large transverse single-spin asymmetries $\left(A_{N}\right)$ are observed in proton-proton collisions
- pQCD predicts $A_{N} \sim \frac{m_{q}}{p_{T}} \cdot \alpha_{S} \sim 0.001$

$$
A_{N} \text { in } p\left(S_{T}\right)+p \rightarrow h+X
$$

$$
A_{N}=\frac{d \sigma_{L}-d \sigma_{R}}{d \sigma_{L}+d \sigma_{R}}
$$

Kane, Pumplin and Repko
PRL 411689 (1978)

R. D. Klem et al., PRL 36, 929 (1976)
D.L. Adams et al., PLB 264, 462-466(1991)
I. Arsene et al., PRL 101, 042001 (2008)
D.L. Adams et al., PLB 261, 201(1991)
B. I. Abelev et al., PRL 101, 222001(2008) A. Adare et al., PRD 90, 012006 (2014)
E.C. Aschenauer et al., arXiv:1602.03922

Possible Mechanisms

Sivers Mechanism:

Correlation between proton spin and parton k_{T}

D. Sivers, Phys Rev D 41 (1990) 83; 43 (1991) 261

Signatures: A_{N} for jets or direct photons, $W^{+/-}, Z^{0}$, Drell-Yan

Collins Mechanism:

Transversity (quark polarization) \otimes jet fragmentation asymmetry

J. Collins, Nucl Phys B 396 (1993) 161

Signatures: Collins effect, Interference fragmentation function (IFF), pion A_{N}

Twist-3:

Quark-gluon / gluon-gluon correlations and fragmentation functions. A source for Sivers function.

EM-Jet A_{N} with FMS and EEMC at STAR

- Motivation:

- Explore potential sources of large A_{N}
- Isolate subprocess contribution (EM-jet A_{N}) to the large A_{N}

$$
\mathrm{p}^{\uparrow}+\mathrm{p} \rightarrow \text { EM-jet }+\mathrm{X}
$$

- Characterize EM-jet A_{N} as a function of EM-jet p_{T}, energy and photon multiplicity
- Advantages of EM-jet:
- Allows to investigate EM component of a full jet
- Enables us to classify EM-jet in terms of its constituent photon multiplicity
- Dataset:
- RHIC Run 15 data
- $\mathrm{p}^{\uparrow} \mathrm{p}$ collisions at $\sqrt{s}=200 \mathrm{GeV}$
- Transversely polarized protons with $<\mathrm{P}>=57 \%$
- $\mathcal{L}=52 \mathrm{pb}^{-1}$

Details of Dataset

- Goal: Extract A_{N} as a function of EM-jet p_{T}, energy and photon multiplicity for the reaction $\mathrm{p}^{\uparrow}+\mathrm{p} \rightarrow$ EM-jet + X using FMS and EEMC.
- Dataset:
- Run 15(200 GeV pp trans)
- Production tag: P15ik (FMS stream) and P16id (Physics stream)
- Full Run List: Can be found in the files here (FMS) and here (EEMC)
- Fill Numbers: Can be found in the files here (FMS) and here (EEMC)
- Fill-by-fill FMS hot/bad channel list: Can be found in the file here
- Data-stream:
-FMS-stream (For FMS EM-jet)
- Physics-stream (For EEMC EM-jet)
- Triggers:
- Small BS, Large BS and FMS-JP Triggers (For FMS EM-jet)
- EHTO, JP and MB triggers (For EEMC EM-jet)
- Veto on LED and abort gap
- STAR library: SL20a
- Source code for this analysis: github.com/latifkabir/BrightSTAR
(Relevant directory is emJetAnalysis)

Analysis Details and List of Cuts

	Status / Value
1. Trigger:	
1.1. FMS Data	FMS BS and JP
1.2. EEMC Data	EHT0, JP and MB
2. Jet Reconstruction:	
2.1. FMS hot channel masking before reconstruction	Yes
2.2. Exclude highly bit-shifted channel	Yes
2.3. Fill-by-fill hot/bad channel masking	Yes
2.4(a). FMS Calibration	UCR (Chong)
2.4(b). FMS points as input for Anti- k_{T}	Yes
2.4(c). FMS Point: Try 1 photon fit (default is yes)	Yes
2.4(d). FMS point: Scale shower shape to 0.8 for large and 0.6 for small cells (default)	Yes
2.4(e). FMS point: Merge Small to large (default)	Yes
2.4(f). FMS point: Choose cluster categorization algorithm (default)	Yes
2.5. R for Anti- k_{T}	0.7
2.6. Photon energy cut	$E_{\gamma}>1.0 \mathrm{GeV}$
2.7. Jet p_{T}	Jet $p_{T}>2.0 \mathrm{GeV} / \mathrm{c}$
2.8. Vertex z priority according to TPC, VPD, BBC	Yes
2.9. BBC slewing correction	Yes
2.10. Jet Finder Class	StJetMaker2015

Analysis Details and List of Cuts

	Status / Value
3. Event Selection Cuts:	
3.1(a). Veto on LED	Yes
3.1(b). Veto on abort gap	Yes
3.2(a). Eta (η) range covered (FMS)	$2.8-3.8$
3.2(b). Eta (η) range covered (EEMC)	$1.0-2.0$
3.3. Vertex z cut	$-80 \mathrm{~cm}<V_{z}<80 \mathrm{~cm}$
3.4. Trigger dependept p_{T} cut	Yes
3.5. Exclude bad spin status	Yes
3.6. Ring of fire cut: BBC and TOF	No
3.7. Ring of fire cut: Exclude Sm-bs3 trigger	Yes
3.8. Exclude fills with wrong spin pattern	Yes
3.9. Exclude events with $x_{F}>1$ or $E_{j e t}>100 \mathrm{GeV}$	Yes

	Status / Value
4. Corrections:	
4.1. Photon energy correction	No
4.2. Jet energy correction	Yes
4.3. Jet Pt correction	Yes
4.4. Underlying event correction	Yes
4.5. Time dependent correction	No
5. A_{N} Extraction:	
5.1. Extraction method	Cross-Ratio Formula
5.2. Phi binning	16

Trigger Dependent p_{T} Cut

Trigger	Id	$E_{T}(\mathbf{G e V})$	15\% Higher
FMS-sm-bs1	480801	1.1	
FMS-sm-bs1	$480821 / 480841$	1.0	
FMS-sm-bs2	480802 / 480822	1.6	
FMS-sm-bs3	480803	2.2	
FMS-sm-bs3	$480823 / 480843$	1.9	
FMS-Ig-bs1	480804	1.1	
FMS-Ig-bs1	480824 / 480844	1.0	
FMS-Ig-bs2	$480805 / 480825$	1.6	
FMS-Ig-bs3	$480806 / 480826$	2.4	
FMS-JP0		1.6	
FMS-JP1		2.4	
FMS-JP2		3.2	

- For EEMC,
-Trigger thresholds for EHO, JP1, JP2 are taken $4.25,5.41,7.28 \mathrm{GeV}$ respectively.

Jet Reconstruction

- FMS hot channel masking before reconstruction.
- Fill-by-fill FMS hot/bad channel list
- Exclude highly bit-shifted FMS channels
- Vertex z priority: TPC, VPD, BBC
- Updated StJetMaker for FMS. Tuned for EM-jet analysis.
- FMS points as input for Anti-k ${ }_{T}$
- EEMC towers as input for EEMC EM-jet
- Anti- k_{T} with $\mathrm{R}=0.7$
- $E_{\gamma}>1.0 \mathrm{GeV}$ (For FMS EM-Jet)
- E_{T} (tower) $>0.2 \mathrm{GeV}$ (For EEMC EM-jet)
- Jet $p_{T}>2.0 \mathrm{GeV} / \mathrm{c}$
- $-80 \mathrm{~cm}<V_{z}<80 \mathrm{~cm}$

Jet Levels MC Jets

Binning:

- Energy bins: 0-20 GeV, 20-40 GeV, 40-60 GeV and 60-80 GeV
- p_{T} bins: $0-5 \mathrm{GeV} / \mathrm{c}$ with $0.5 \mathrm{GeV} / \mathrm{c}$ increment, $5.0-6.0,6.0-8.0 \mathrm{GeV} / \mathrm{c}$
- 16 equal ϕ bins in the range $-\pi$ to π
- Up to 5 photon multiplicity bins
- Done separately for $x_{F}>0$ and $x_{F}<0$

EM-Jet A_{N} Extraction

- Cross-ratio formula to calculate A_{N}

$$
\epsilon \approx \frac{\epsilon=P A_{N} \cos (\phi)}{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}}-\sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}} \sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}}+\sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}
$$

- Advantages: Cancels systematics, such as luminosity and detector effects

EM-Jet A_{N} Extraction

$$
\begin{aligned}
& N^{\uparrow}=I_{0}^{\uparrow} \epsilon\left(1+P A_{N} \cos \phi\right) \\
& N^{\downarrow}=I_{0}^{\downarrow} \epsilon\left(1-P A_{N} \cos \phi\right)
\end{aligned}
$$

$$
A(\phi)=\frac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}}
$$

$$
A(\phi) \approx P A_{N} \cos \phi+\frac{l_{0}^{\uparrow}-I_{0}^{\downarrow}}{l_{0}^{\uparrow}+I_{0}^{\downarrow}}
$$

$$
A(\phi)=P A_{N} \cos (\phi)+p_{1}
$$

$A(\phi)+A(\phi+\pi) \approx 2 \frac{I_{0}^{\uparrow}-I_{0}^{\downarrow}}{I_{0}^{\uparrow}+I_{0}^{\downarrow}}$

- Allows extraction of both physics asymmetry and beam asymmetry
- Used to cross check the other extraction method

EM-jet A_{N} Corrections and Systematic Uncertainties

A_{N} Corrections and Uncertainties:

- Event Misidentification:
- Misidentification of 1, 2 etc photons as other types (2, 1, etc)
- Background Uncertainty
- Pile-up, Abort gap, Ring of fire
- Underlying events
- Polarization Error

Energy or p_{T} Corrections and Uncertainties:

- Calibration uncertainty
- Energy or p_{T} correction
- Uncertainty due to radiation damage

Remaining work on systematic uncertainties to be used for final results

- Current systematics for A_{N} is likely over estimated as it is based on a simulation that is not perfect. Final results aim to address this.
- For Details of the corrections and systematic uncertainties, see the pwg presentation here
- Library version: SL20a
- Geometry: y2015
- Chain option: "ry2015a agml usexgeom MakeEvent McEvent vfmce Idst BAna IO I3 Tree logger fmsSim fmspoint evout -dstout IdTruth bigbig fzin geantout clearmem sdt20150417.193427"
- Beam Energy: 200 GeV
- PYTHIA Tune: Tune Perugia6 (Tune param 370): Perugia with CTEQ6 structure functions.
- FMS Gain and Gain Correction: Same as data.
- Event Filter: PYTHIA and BFC level filtering (StFmsFilterMaker).
- Trigger Simulation: FMS Trigger Simulator (StFmsTriggerMaker).
- Bad/Hot channels: Same as data.

FMS EM-Jet Simulation: Workflow

- For Details about the outcome of simulation studies, see the pwg meeting presentation here

Preliminary Request for Run 15 Results

Run 15 FMS EM-jet A_{N} Results

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_{T} with $\mathrm{R}=0.7$
- $E_{\gamma}>1.0 \mathrm{GeV}$
- Jet $p_{T}>2.0 \mathrm{GeV} / \mathrm{c}$
- $2.8<\eta^{E M-j e t}<3.8$
- Statistical and systematic error bars
- 3.46% polarization scale uncertainty not shown

Run 15 FMS EM-jet A_{N} Results

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_{T} with $\mathrm{R}=0.7$
- $E_{\gamma}>1.0 \mathrm{GeV}$
- Jet $p_{T}>2.0 \mathrm{GeV} / \mathrm{c}$
- $2.8<\eta^{E M-j e t}<3.8$
- Statistical and systematic error bars
- 3.46\% polarization scale uncertainty not shown

Run 15 EEMC EM-jet A_{N} Results

- EHTO, JP and MB triggers
- Anti- k_{T} with $\mathrm{R}=0.7$
- Photon multiplicity based on EEMC tower counts
- Tower $E_{T}>0.2 \mathrm{GeV}$
- Jet $p_{T}>2.0 \mathrm{GeV} / \mathrm{c}$
- $1.0<\eta^{E M-j e t}<2.0$
- Statistical and systematic error bars
- 3.46% polarization scale uncertainty not shown

