EM-jet A_N at Forward Rapidities in p⁺+p Collisions at \sqrt{s} = 200 GeV

Preliminary Request for Run 15 Results

Latif Kabir

August 11, 2021

Run 15 EM-Jet A_N Using FMS and EEMC

August 11, 2021 1 / 20

ъ

Abstract

Title: Transverse Single-Spin Asymmetry for Electromagnetic Jets at Forward Rapidities in p^+p Collisions at $\sqrt{s} = 200$ GeV at STAR

Abstract (SPIN21):

There have been various attempts, both experimentally and theoretically, to understand the origin of the unexpectedly large transverse single-spin asymmetries (A_N) for inclusive hadron production at forward rapidity in p⁺+p collisions that persist from low to high center-of-mass energies. Two proposed potential sources are the twist-3 contributions in the collinear factorization and the transverse-momentum-dependent contributions from either the initial-state quark and gluon Sivers functions or the final-state Collins fragmentation function. Jet A_N is sensitive to the initial state effect and can provide access to Sivers functions. A_N for jets of different substructures can help better understand the underlying mechanism for the observed large A_N . Transversely polarized p⁺+p collisions at RHIC are ideal to disentangle the initial and final state effects. The STAR Forward Meson Spectrometer (FMS) and Endcap Electromagnetic Calorimeter (EEMC), having pseudo-rapidity coverages of 2.6 - 4.2 and 1.1 - 2.0 respectively, can be used to detect photons, neutral pions, and eta mesons. We present preliminary results of A_N for electromagnetic jets in FMS and EEMC using p⁺+p collisions at $\sqrt{s} = 200 \text{ GeV}$ where we explore the dependences of A_N on photon multiplicity inside the jet, jet transverse momentum, and jet energy.

PAs: Latiful Kabir¹, Chong Kim, Ken Barish², Mriganka M Mondal

¹ Latiful.Kabir@ucr.edu

² Kenneth.Barish@ucr.edu (Supervisor)

-

Transverse Single-Spin Asymmetry (A_N)

• Unexpected large transverse single-spin asymmetries (A_N) are observed in proton-proton collisions

I. Arsene et al., PRL 101, 042001 (2008)

 $A_N = \frac{d\sigma_L - d\sigma_R}{d\sigma_L + d\sigma_R}$

Latif Kabir

August 11, 2021 3 / 20

A. Adare *et al.*, PRD **90**, 012006 (2014) E.C. Aschenauer *et al.*, arXiv:1602.03922

イロン 不得 とくほ とくほ とうほ

Possible Mechanisms

Sivers Mechanism:

Correlation between proton spin and parton k_T

D. Sivers, Phys Rev D 41 (1990) 83; 43 (1991) 261

Signatures: A_N for jets or direct photons, $\overline{W^{+/-}, Z^0}$. Drell-Yan

Collins Mechanism:

Transversity (quark polarization) \otimes jet fragmentation asymmetry

J. Collins, Nucl Phys B 396 (1993) 161

Signatures: Collins effect, Interference fragmentation function (IFF), pion A_N

Twist-3:

Quark-gluon / gluon-gluon correlations and fragmentation functions. A source for Sivers function.

J.W. Qiu and G. Sterman, Phys Rev Lett 67 2264 (1991)

Latif Kabir

EM-Jet A_N with FMS and EEMC at STAR

Motivation:

- Explore potential sources of large A_N
- Isolate subprocess contribution (EM-jet A_N) to the large A_N

- Characterize EM-jet A_N as a function of EM-jet p_T , energy and photon multiplicity

• Advantages of EM-jet:

- Allows to investigate EM component of a full jet
- Enables us to classify EM-jet in terms of its constituent photon multiplicity

Dataset:

- RHIC Run 15 data
- $p^{\uparrow}p$ collisions at \sqrt{s} = 200 GeV
- Transversely polarized protons with $\langle P \rangle = 57\%$
- $\mathcal{L} = 52 \text{ pb}^{-1}$

 $\textbf{EM-jet} \rightarrow \textbf{Jet}$ reconstructed out of photons only

• • • • • • • •

Details of Dataset

 Goal: Extract A_N as a function of EM-jet p_T, energy and photon multiplicity for the reaction p[↑] + p → EM-jet + X using FMS and EEMC.

Dataset:

- Run 15(200 GeV pp trans)
- Production tag: P15ik (FMS stream) and P16id (Physics stream)
- Full Run List: Can be found in the files here (FMS) and here (EEMC)
- Fill Numbers: Can be found in the files here (FMS) and here (EEMC)
- Fill-by-fill FMS hot/bad channel list: Can be found in the file here

• Data-stream:

-FMS-stream (For FMS EM-jet)

- Physics-stream (For EEMC EM-jet)

• Triggers:

- Small BS, Large BS and FMS-JP Triggers (For FMS EM-jet)
- EHT0, JP and MB triggers (For EEMC EM-jet)
- Veto on LED and abort gap
- STAR library: SL20a
- Source code for this analysis: github.com/latifkabir/BrightSTAR
 - (Relevant directory is emJetAnalysis)

Latif Kabir

-

・ロト ・ 同ト ・ ヨト ・ ヨト

Analysis Details and List of Cuts

	Status / Value
1. Trigger:	
1.1. FMS Data	FMS BS and JP
1.2. EEMC Data	EHT0, JP and MB
2. Jet Reconstruction:	
2.1. FMS hot channel masking before reconstruction	Yes
2.2. Exclude highly bit-shifted channel	Yes
2.3. Fill-by-fill hot/bad channel masking	Yes
2.4(a). FMS Calibration	UCR (Chong)
2.4(b). FMS points as input for Anti- k_T	Yes
2.4(c). FMS Point: Try 1 photon fit (default is yes)	Yes
2.4(d). FMS point: Scale shower shape to 0.8 for large and 0.6 for small cells (default)	Yes
2.4(e). FMS point: Merge Small to large (default)	Yes
2.4(f). FMS point: Choose cluster categorization algorithm (default)	Yes
2.5. R for Anti- k_T	0.7
2.6. Photon energy cut	E_γ > 1.0 GeV
2.7. Jet p_T	Jet p_T > 2.0 GeV/c
2.8. Vertex z priority according to TPC, VPD, BBC	Yes
2.9. BBC slewing correction	Yes
2.10. Jet Finder Class	StJetMaker2015

Run 15 EM-Jet A_N Using FMS and EEMC

・ロン ・個 とくほど くほど

æ

Analysis Details and List of Cuts

	Status / Value
3. Event Selection Cuts:	
3.1(a). Veto on LED	Yes
3.1(b). Veto on abort gap	Yes
3.2(a). Eta (η) range covered (FMS)	2.8 - 3.8
3.2(b). Eta (η) range covered (EEMC)	1.0 - 2.0
3.3. Vertex z cut	-80 cm < V_z < 80 cm
3.4. Trigger dependept p_T cut	Yes
3.5. Exclude bad spin status	Yes
3.6. Ring of fire cut: BBC and TOF	No
3.7. Ring of fire cut: Exclude Sm-bs3 trigger	Yes
3.8. Exclude fills with wrong spin pattern	Yes
3.9. Exclude events with x_F > 1 or E_{jet} > 100 ${\rm GeV}$	Yes

	Status / Value	
4. Corrections:		
4.1. Photon energy correction	No	
4.2. Jet energy correction	Yes	
4.3. Jet Pt correction	Yes	
4.4. Underlying event correction	Yes	
4.5. Time dependent correction	No	
5. A_N Extraction:		
5.1. Extraction method	Cross-Ratio Formula	
5.2. Phi binning	16	

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Trigger Dependent p_T Cut

Trigger	Id	E_T (GeV)	15% Higher
FMS-sm-bs1	480801	1.1	
FMS-sm-bs1	480821 / 480841	1.0	
FMS-sm-bs2	480802 / 480822	1.6	
FMS-sm-bs3	480803	2.2	
FMS-sm-bs3	480823 / 480843	1.9	
FMS-lg-bs1	480804	1.1	
FMS-lg-bs1	480824 / 480844	1.0	
FMS-lg-bs2	480805 / 480825	1.6	
FMS-lg-bs3	480806 / 480826	2.4	
FMS-JP0		1.6	
FMS-JP1		2.4	
FMS-JP2		3.2	

• For EEMC,

-Trigger thresholds for EH0, JP1, JP2 are taken 4.25, 5.41, 7.28 GeV respectively.

2

イロト イポト イヨト イヨト

Jet Reconstruction

- FMS hot channel masking before reconstruction.
- Fill-by-fill FMS hot/bad channel list
- Exclude highly bit-shifted FMS channels
- Vertex z priority: TPC, VPD, BBC
- Updated *StJetMaker* for FMS. Tuned for EM-jet analysis.
- FMS points as input for Anti-k₇
- EEMC towers as input for EEMC EM-jet
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$ (For FMS EM-Jet)
- E_T (tower) > 0.2 GeV (For EEMC EM-jet)
- Jet *p*_T > 2.0 GeV/c
- -80 cm $< V_z <$ 80 cm

Update on EM-Jet A_N in FMS and EEMC

EM-Jet *A_N* **Extraction**

Binning:

- Energy bins: 0 20 GeV, 20 40 GeV, 40 60 GeV and 60 80 GeV
- *p*_T bins: 0 5 GeV/c with 0.5 GeV/c increment, 5.0 6.0, 6.0 8.0 GeV/c
- 16 equal ϕ bins in the range $-\pi$ to π
- Up to 5 photon multiplicity bins
- Done separately for $x_F > 0$ and $x_F < 0$

EM-Jet *A_N* **Extraction**

• Cross-ratio formula to calculate A_N

$$\epsilon pprox rac{\epsilon = PA_N \cos(\phi)}{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} - \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}} \sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}$$

• Advantages: Cancels systematics, such as luminosity and detector effects

EM-Jet A_N Extraction

- Allows extraction of both physics asymmetry and beam asymmetry
- Used to cross check the other extraction method

Latif Kabir

Run 15 EM-Jet A_N Using FMS and EEMC

э

イロト イポト イヨト イヨト

EM-jet *A_N* **Corrections and Systematic Uncertainties**

A_N Corrections and Uncertainties:

- Event Misidentification:
 - Misidentification of 1, 2 etc photons as other types (2, 1, etc)
- Background Uncertainty
 - Pile-up, Abort gap, Ring of fire
 - Underlying events
- Polarization Error

Energy or p_T Corrections and Uncertainties:

- Calibration uncertainty
- Energy or p_T correction
- Uncertainty due to radiation damage

Remaining work on systematic uncertainties to be used for final results

Current systematics for A_N is likely over estimated as it is based on a simulation that is not perfect. Final results aim to address this.

- For Details of the corrections and systematic uncertainties, see the pwg presentation here

FMS EM-Jet Simulation: Configuration

- Library version: SL20a
- Geometry: y2015
- Chain option: "ry2015a agml usexgeom MakeEvent McEvent vfmce ldst BAna I0 I3 Tree logger fmsSim fmspoint evout -dstout IdTruth bigbig fzin geantout clearmem sdt20150417.193427"
- Beam Energy: 200 GeV
- **PYTHIA Tune:** Tune Perugia6 (Tune param 370): Perugia with CTEQ6 structure functions.
- FMS Gain and Gain Correction: Same as data.
- Event Filter: PYTHIA and BFC level filtering (*StFmsFilterMaker*).
- **Trigger Simulation:** FMS Trigger Simulator (*StFmsTriggerMaker*).
- Bad/Hot channels: Same as data.

I NON

イロト イボト イヨト

FMS EM-Jet Simulation: Workflow

- For Details about the outcome of simulation studies, see the pwg meeting presentation here

Latif Kabir

Preliminary Request for Run 15 Results

э.

・ロト ・ 同ト ・ ヨト ・ ヨ

Run 15 FMS EM-jet *A_N* **Results**

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- 2.8 < η^{EM-jet} < 3.8
- Statistical and systematic error bars
- 3.46% polarization scale uncertainty not shown

Run 15 FMS EM-jet *A_N* **Results**

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- 2.8 < η^{EM-jet} < 3.8
- Statistical and systematic error bars
- 3.46% polarization scale uncertainty not shown

э

Image: A matrix

Run 15 EEMC EM-jet A_N **Results**

- EHT0, JP and MB triggers
- Anti- k_T with R = 0.7
- Photon multiplicity based on EEMC tower counts
- Tower $E_T > 0.2 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- $1.0 < \eta^{EM-jet} < 2.0$
- Statistical and systematic error bars
- 3.46% polarization scale uncertainty not shown

