Update on EM-Jet A_N Using FMS and EEMC

For Run 15 Dataset

Latif Kabir

February 17, 2021

Latif Kabir

Update on EM-Jet A_N Using FMS and EEMC

February 17, 2021 1 / 16

ъ

Reminder: EM-Jet A_N Using FMS and EEMC

- $\bullet \ p^{\uparrow} + p \rightarrow \text{EM-jet} + X$
- Extract A_N as a function of EM-jet p_T, energy and photon multiplicity.
- EM-jet in FMS and EEMC

• Dataset: Run 15(200 GeV pp trans)

• Data-stream:

-FMS-stream (For FMS EM-jet) - Physics-stream (For EEMC EM-jet)

• Triggers:

- Small BS, Large BS and FMS-JP Triggers (For FMS EM-jet)
- EHT0, JP and MB triggers (For EEMC EM-jet)
- Veto on LED and abort gap

Reminder: FMS and EEMC EM-Jet A_N

	a
	Status / Value
1. Trigger:	
1.1. FMS Data	FMS BS and JP Triggers
1.2. EEMC Data	EHT0, JP and MB
2. Jet Reconstruction:	
2.1. FMS hot channel masking before reconstruction	Yes
2.2. Exclude highly bit-shifted channel	Yes
2.3. Fill-by-fill hot/bad channel masking	Yes
2.4(a). FMS points as input for Anti- k_T	Yes
2.4(b). FMS Point: Try 1 photon fit (default in yes)	Yes
$2.4(c).\mbox{FMS}$ point: Scale shower shape to 0.8 for large and 0.6 for small cells (default)	Yes
2.5. R for Anti- k_T	0.7
2.6. Photon energy cut	E_γ > 2.0 GeV
2.7. Jet p_T	Jet p_T > 2.0 GeV/c
2.8. Vertex z priority according to TPC, VPD, BBC	Yes
2.9. BBC slewing correction	Yes
2.10. Jet Finder Class	StJetMaker2015

3. Event Selection Cuts:	Status / Value
3.1(a). Veto on LED	Yes
3.1(b). Veto on abort gap	Yes
3.2(a). Eta (η) range covered (FMS)	2.8 - 3.8
3.2(b). Eta (η) range covered (EEMC)	1.0 - 2.0
3.3. Vertex z cut	-80 cm < V_z < 80 cm
3.4. Trigger dependept p_T cut	Yes
3.5. Exclude bad spin status	Yes
3.6. Ring of fire cut: BBC and TOF	No
3.7. Ring of fire cut: Exclude Sm-bs3 trigger	Yes
3.8. Exclude fills with wrong spin pattern	Yes
3.9. Exclude events with x_F > 1 or E_{jet} > 100 GeV	Yes
4. Corrections:	
4.1. Photon energy correction	No
4.2. Jet energy correction	No
4.3. Jet Pt correction	No
4.4. Underlying event correction	No
4.5. Time dependent correction	No
5. A_N Extraction:	
5.1. Extraction method	Cross-Ratio Formula
5.2. Phi binning	16

Latif Kabir

Update on EM-Jet A_N Using FMS and EEMC

э.

< ∃ >

Reminder: FMS and EEMC EM-Jet A_N

Update To EEMC EM-jet

Earlier version:

- Used EEMC tower + TPC tracks as input for jet finder
- EEMC tower size has eta dependence

Current version:

- Repeated the calculation with following modifications:
 - Used photon candidates made out of SMD + EEMC towers
 - Removed TPC tracks and kept only photon candidates
 - Photon energy cut: 2.0 GeV

Update To EEMC EM-jet

э.

イロト イポト イヨト イヨト

Photon Reconstruction in EEMC/SMD: Same as used for 2006 EEMC Paper by S. Gliske, J. Webb et al.

- EM Particle Reconstruction Procedure
 - Identify clusters in the u and v strips
 - Determine which u and v clusters to associate with incident particles
 - Compute energy of incident particles (e.g. photons) from the towers
 - Compute momentum from the vertex and SMD cluster positions
- SMD response (right) in π^0 candidate event from data
 - Blue histograms show energy response per strip
 - Red triangles represent clusters drawn at mean strip position, and 10% of the cluster energy
- SMD clusters are found by
 - Smoothing the histogram using the method of J. Tukey
 - Identifying clusters as a strip above an energy threshold, with +-3 adjacent strips with monotonically decreasing energy
 - Setting cluster position to energy-weighted mean position of strips
- EM particle candidates built from pairs of u-v clusters
 - Clusters matched by energy of u and v strips
 - Required to have associated tower energy above threshold
 - Often have e.g. two photons from one π^0 deposited in one tower
- · Reconstruction difficulties include
 - Upstream passive material: π^0 opening angle on the same order as photon conversions
 - Single particles sometimes look like two particles, and vice versa

Update on EM-Jet A_N Using FMS and EEMC

*Slide taken from A. Gibson's talk

EEMC SMD Photon Samples

Update on EM-Jet A_N Using FMS and EEMC

EM-jet With EEMC SMD

3

イロト イポト イヨト イヨト

EM-jet With EEMC SMD

EM-jet With EEMC SMD: Photons Inside EM-jet

• Note: $E_{\gamma} > 2.0 \text{ GeV}$

3

イロト 不得 トイヨト イヨト

Effect of Photon Energy Threshold Cut: 0.2 GeV vs 2.0 GeV

FMS and EEMC (Updated) EM-Jet A_N: 2 GeV Photon Energy Cut

EM-jet *A_N* **Systematic Uncertainties**

A_N Uncertainties:

- Event Misidentification:
 - Misidentification of 1, 2 etc photons as other types (2, 1, etc)
- Background Uncertainty
 - Pile up, Abort gap, Ring of fire
 - Underlying events
- Polarization Error

Energy or p_T Uncertainties:

- Calibration uncertainty
- Energy correction
- Uncertainty due to radiation damage
- Positional uncertainties
- Vertex uncertainty

3

イロト イヨト イヨト

Unfolding Procedure??

- Solve a set of five linear equation with five variables for each energy and p_T bin •
- Decompose A_N as a linear composition of number of photons n_i or corresponding A_N^i ?? •

э

Summary

- Updated EEMC EM-jet A_N by replacing EEMC towers by SMD photon candidates
- Work on systematic uncertainties is in progress.
- Need to decide on unfolding procedure (if required)

э.

イロト 不得 トイヨト イヨト