Paper Preview

Multi-dimensional study of transverse single-spin asymmetries for electromagnetic jets at forward rapidities in polarized pp collisions at \sqrt{s} = 200 GeV

Latif Kabir

(For the PAs)

June 21, 2024

Paper Proposal for EM-Jet A_N in FMS and EEMC

-

Paper Proposal

- Title: Multi-dimensional study of transverse single-spin asymmetries for electromagnetic jets at forward rapidities in polarized *pp* collisions at \sqrt{s} = 200 GeV
- PAs: Ken Barish, Christopher Dilks, Carl Gagliardi, Latif Kabir, David Kapukchyan, Xilin Liang and Mriganka Mouli Mondal
- Target Journal: Physical Review D
- Drupal page for the paper: Link C
- Abstract: The STAR Collaboration reports measurements of the transverse single-spin asymmetries, A_N , for electromagnetic jets (EM-jets) in pp collisions at $\sqrt{s} = 200$ GeV as three-dimensional functions of the EM-jet Feynman-x (x_F), transverse momentum (p_T), and photon multiplicity. Results are presented for two different EM-jet pseudorapidity regions, $1.0 < \eta < 2.0$ and $2.8 < \eta < 3.8$. A_N is found to be strong functions of EM-jet x_F and photon multiplicity, and a weaker function of EM-jet p_T . These results can help to elucidate the dynamics underlying the large transverse single-spin asymmetries that have been observed for inclusive hadron production at forward rapidities.

3

Transverse Single-Spin Asymmetry (A_N)

• Unexpected large transverse single-spin asymmetries (A_N) are observed in proton-proton collisions

R. D. Klem *et al.*, PRL **36**, 929 (1976) D.L. Adams *et al.*, PLB **264**, 462 - 466(1991) I. Arsene *et al.*, PRL **101**, 042001 (2008) D.L. Adams *et al.*, PLB **261**, 201(1991)
 B. I. Abelev *et al.*, PRL **101**, 222001(2008)
 A. Adare *et al.*, PRD **90**, 012006 (2014)
 E.C. Aschenauer *et al.*, arXiv:1602.03922

 $A_N = \frac{d\sigma_L - d\sigma_R}{d\sigma_L + d\sigma_R}$

Paper Proposal for EM-Jet A_N in FMS and EEMC

-

Possible Mechanisms

D. Sivers, Phys Rev D 41 (1990) 83; 43 (1991) 261

Signatures: A_N for jets or direct photons, $W^{+/-}$, Z^0 , Drell-Yan

J. Collins, Nucl Phys B 396 (1993) 161

Signatures: Collins effect, Interference fragmentation function (IFF), pion A_{N}

Twist-3:

Quark-gluon / gluon-gluon correlations and fragmentation functions. A source for Sivers function.

J.W. Qiu and G. Sterman, Phys Rev Lett 67 2264 (1991)

Paper Proposal for EM-Jet A_M in FMS and EEMC

κ_{τ.π}

EM-Jet A_N with FMS and EEMC at STAR

• Motivation:

- Explore potential sources of large A_N
- Isolate subprocess contribution (EM-jet A_N) to the large A_N
- Characterize EM-jet A_N as a function of EM-jet p_T , x_F and photon multiplicity

• Dataset:

- RHIC Run 15 data
- $p^{\uparrow}p$ collisions at \sqrt{s} = 200 GeV
- Transversely polarized protons with <P> = 57%
- $L = 52 \text{ pb}^{-1}$

• Data-stream:

- -FMS-stream (For FMS EM-jet)
- Physics-stream (For EEMC EM-jet)

• Triggers:

- Small BS, Large BS and FMS-JP Triggers (For FMS EM-jet)
- EHT0, JP and MB triggers (For EEMC EM-jet)

 $\textbf{EM-jet} \rightarrow \textbf{Jet}$ reconstructed out of photons only

Jet Reconstruction

- FMS hot channel masking before reconstruction.
- Fill-by-fill FMS hot/bad channel list
- Exclude highly bit-shifted FMS channels
- Vertex z priority: TPC, VPD, BBC
- Updated *StJetMaker* for FMS. Tuned for EM-jet analysis.
- FMS points as input for Anti-k_T
- EEMC towers as input for EEMC EM-jet
- Anti- k_T with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV}$ (For FMS EM-Jet)
- E_T (tower) > 0.2 GeV (For EEMC EM-jet)
- Jet *p*_T > 2.0 GeV/c
- -80 cm $< V_z <$ 80 cm

Paper Proposal for EM-Jet A_N in FMS and EEMC

э

EM-Jet A_N Extraction

Binning:

- Energy bins: 0 20 GeV, 20 40 GeV, 40 60 GeV and 60 80 GeV
- *p*_T bins: 0 5 GeV/c with 0.5 GeV/c increment, 5.0 6.0, 6.0 8.0 GeV/c
- 16 equal ϕ bins in the range $-\pi$ to π
- Up to 5 photon multiplicity bins
- Done separately for $x_F > 0$ and $x_F < 0$

Paper Proposal for EM-Jet A_N in FMS and EEMC

-

EM-Jet *A_N* **Extraction**

• Cross-ratio formula to calculate A_N

$$\epsilon pprox rac{eta = PA_N \cos(\phi)}{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} - \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}} \sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}$$

• Advantages: Cancels systematics, such as luminosity and detector effects

EM-Jet *A_N* **Extraction**

$$N^{\uparrow} = l_{0}^{\uparrow} \epsilon (1 + PA_{N} \cos \phi)$$

$$N^{\downarrow} = l_{0}^{\downarrow} \epsilon (1 - PA_{N} \cos \phi)$$

$$A(\phi) = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

$$A(\phi) \approx PA_{N} \cos \phi + \frac{l_{0}^{\uparrow} - l_{0}^{\downarrow}}{l_{0}^{\uparrow} + l_{0}^{\downarrow}}$$

$$A(\phi) = PA_{N} \cos(\phi) + p_{1}$$

$$A(\phi) + A(\phi + \pi) \approx 2 \frac{l_{0}^{\uparrow} - l_{0}^{\downarrow}}{l_{0}^{\uparrow} + l_{0}^{\downarrow}}$$

- Allows extraction of both physics asymmetry and beam asymmetry
- Used to cross check the other extraction method

Latif Kabir

Paper Proposal for EM-Jet A_N in FMS and EEMC

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

EM-jet A_N Corrections and Systematic Uncertainties

A_N Corrections and Uncertainties:

- Event Misidentification:
 - Misidentification of 1, 2 etc photons as other types (2, 1, etc)
- Background Uncertainty
 - Pile-up, Abort gap, Ring of fire
 - Underlying events
- Polarization Error

Energy or p_T Corrections and Uncertainties:

- Calibration uncertainty
- Energy or p_T correction
- Uncertainty due to radiation damage

Leading systematic uncertainty contributions

- Event Misidentification (Up to 20%)
- Calibration uncertainty (3%)
- All others (< 1%)

- For Details of the corrections and systematic uncertainties, see the pwg presentation here 🖉

Paper Plots

Paper Proposal for EM-Jet A_N in FMS and EEMC

◆□ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷</p>
June 21, 2024

Run 15 FMS EM-jet A_N Results

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7 •
- $E_{\gamma} > 1.0 \, \text{GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- 2.8 < n^{EM-jet} < 3.8
- Statistical and systematic error bars •
- 3.0% polarization scale uncertainty not shown
 - EM-jet A_N decreases with increasing photon multiplicity (iettiness)
 - A_N is the strongest for EM-jets consisting of 1 or 2 photons
 - A_N is significantly smaller for EM-jets with 4 or 5 photons
 - A_N at $x_F < 0$ is consistent with 0 Latif Kabir

Paper Proposal for EM-Jet A_M in FMS and EEMC

Run 15 FMS EM-jet A_N Results

- Small BS, Large BS and FMS-JP Triggers
- Anti- k_T with R = 0.7
- *E*_γ > 1.0 GeV
- Jet *p*_T > 2.0 GeV/c
- 2.8 < η^{EM-jet} < 3.8
- Statistical and systematic error bars
- 3.0% polarization scale uncertainty not shown

- EM-jet A_N is the strongest for EM-jets consisting of 1 or 2 photons
- EM-jets with 3 photons has a non-zero A_N but lower than that of 1-photon or 2-photon EM-jets
- EM-jets with higher photon multiplicities have significantly smaller asymmetries
- A_N increases with increasing x_F

э

Run 15 EEMC EM-jet A_N **Results**

- EHT0, JP and MB triggers
- Anti- k_T with R = 0.7
- Photon multiplicity based on EEMC tower counts
- Tower $E_T > 0.2 \text{ GeV}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- $1.0 < \eta^{EM-jet} < 2.0$
- Statistical and systematic error bars
- 3.0% polarization scale uncertainty not shown
 - A_N is significantly smaller for EM-jets in the intermediate rapidity, probing much lower x_F range, compared to forward rapidity
 - The trend of EM-jet A_N decreasing with increasing photon multiplicity (jettiness) seems to hold
 - A_N is zero at low p_T and positive at higher p_T for $x_F > 0$
 - A_N at $x_F < 0$ is consistent with 0

Status and Plans

• Status of the analysis:

- Inclusive EM-jet A_N : The analysis is completed. Paper proposal now.
- Diffractive EM-jet *A_N*: Single diffractive process is at the preliminary level, and will be finalized soon; semi-exclusive process will be finalized in April
- Paper draft and analysis note are in progress
- PAs are regularly meeting for the last several months

• Plan for the paper:

- We plan to have two papers for the inclusive and diffractive EM-jet A_N
- 1. 1st paper: PRD paper will focus on inclusive EM-jet A_N , and it will plan to release earlier than the other one
- 2. 2nd paper (TBD): will focus on diffractive EM-jet A_N. The FMS and EM-jet part will cite the first paper.
- We will do the paper proposal separately for the two papers.

= nan

Previous Presentations on This Analysis

- PWG Meeting on June 3, 2020: FMS Hot Channels and Data QA
- PWG Meeting on October 14, 2020: <u>FMS Jet Simulation</u> C
- PWG meeting on October 21, 2020: Trigger Dependent Cut 🗹
- PWG meeting on November 18, 2020: Fit Quality, Ring of Fire 🗹
- PWG meeting on February 17, 2021: EEMC Jet
- PWG meeting on February 24, 2021: EEMC Jet C
- PWG meeting on June 2nd, 2021: Corrections and Systematics 🗠
- PWG meeting on August 11, 2021: Early Results C
- Comparing with Zhanwen's results \overline{C}
- DNP 2020 Presentation I Implication
- GPH 2021 Workshop Presentation I
- SPIN 2021 Workshop Presentation I
- SPIN 2021 Workshop Proceeding I
- DIS 2022 Workshop Proceeding I Implementation

-

Backup Slides

Paper Proposal for EM-Jet A_N in FMS and EEMC

✓ □ ▶ < □ ▶ < □ ▶ < □ ▶
 June 21, 2024

Analysis Details and List of Cuts

	Status / Value
1. Trigger:	
1.1. FMS Data	FMS BS and JP
1.2. EEMC Data	EHT0, JP and MB
2. Jet Reconstruction:	
2.1. FMS hot channel masking before reconstruction	Yes
2.2. Exclude highly bit-shifted channel	Yes
2.3. Fill-by-fill hot/bad channel masking	Yes
2.4(a). FMS Calibration	UCR (Chong)
2.4(b). FMS points as input for Anti- k_T	Yes
2.4(c). FMS Point: Try 1 photon fit (default is yes)	Yes
2.4(d). FMS point: Scale shower shape to 0.8 for large and 0.6 for small cells (default)	Yes
2.4(e). FMS point: Merge Small to large (default)	Yes
2.4(f). FMS point: Choose cluster categorization algorithm (default)	Yes
2.5. R for Anti- k_T	0.7
2.6. Photon energy cut	E_γ > 1.0 GeV
2.7. Jet p_T	Jet p_T > 2.0 GeV/c
2.8. Vertex z priority according to TPC, VPD, BBC	Yes
2.9. BBC slewing correction	Yes
2.10. Jet Finder Class	StJetMaker2015

Paper Proposal for EM-Jet A_N in FMS and EEMC

Analysis Details and List of Cuts

	Status / Value
3. Event Selection Cuts:	
3.1(a). Veto on LED	Yes
3.1(b). Veto on abort gap	Yes
3.2(a). Eta (η) range covered (FMS)	2.8 - 3.8
3.2(b). Eta (η) range covered (EEMC)	1.0 - 2.0
3.3. Vertex z cut	-80 cm < V_z < 80 cm
3.4. Trigger dependept p_T cut	Yes
3.5. Exclude bad spin status	Yes
3.6. Ring of fire cut: BBC and TOF	No
3.7. Ring of fire cut: Exclude Sm-bs3 trigger	Yes
3.8. Exclude fills with wrong spin pattern	Yes
3.9. Exclude events with x_F > 1 or E_{jet} > 100 ${\rm GeV}$	Yes

	Status / Value	
4. Corrections:		
4.1. Photon energy correction	No	
4.2. Jet energy correction	Yes	
4.3. Jet Pt correction	Yes	
4.4. Underlying event correction	Yes	
4.5. Time dependent correction	No	
5. A_N Extraction:		
5.1. Extraction method	Cross-Ratio Formula	
5.2. Phi binning	16	

Trigger Dependent p_T Cut

Trigger	Id	E_T (GeV)	15% Higher
FMS-sm-bs1	480801	1.1	
FMS-sm-bs1	480821 / 480841	1.0	
FMS-sm-bs2	480802 / 480822	1.6	
FMS-sm-bs3	480803	2.2	
FMS-sm-bs3	480823 / 480843	1.9	
FMS-lg-bs1	480804	1.1	
FMS-lg-bs1	480824 / 480844	1.0	
FMS-lg-bs2	480805 / 480825	1.6	
FMS-lg-bs3	480806 / 480826	2.4	
FMS-JP0		1.6	
FMS-JP1		2.4	
FMS-JP2		3.2	

• For EEMC,

-Trigger thresholds for EH0, JP1, JP2 are taken 4.25, 5.41, 7.28 GeV respectively.

Fit Quality

Paper Proposal for EM-Jet A_N in FMS and EEMC

Details of Dataset

Goal: Extract A_N as a function of EM-jet p_T, x_F and photon multiplicity for the reaction p[↑] + p → EM-jet + X using FMS and EEMC.

• Dataset:

- Run 15(200 GeV pp trans)
- Production tag: P15ik (FMS stream) and P16id (Physics stream)
- Full Run List: Can be found in the files here (FMS) and here (EEMC)
- Fill Numbers: Can be found in the files here (FMS) and here (EEMC)
- Fill-by-fill FMS hot/bad channel list: Can be found in the file here

• Data-stream:

-FMS-stream (For FMS EM-jet)

- Physics-stream (For EEMC EM-jet)

• Triggers:

- Small BS, Large BS and FMS-JP Triggers (For FMS EM-jet)
- EHT0, JP and MB triggers (For EEMC EM-jet)
- Veto on LED and abort gap
- STAR library: SL20a
- Source code for this analysis: github.com/latifkabir/BrightSTAR

(Relevant directory is emJetAnalysis)