Collins paper code QA Run 12+15 pp200 Collins analysis (psn0782)

Code QA: Xilin Liang

PAs: J.K. Adkins, J.L. Drachenberg, R. Fatemi, C.A. Gagliardi, and T. Lin Dec. 9, 2021

Brief status

- run15
 - Step 1, 2: jet tree and embedding generation
 - Step 3: "analysis", run over all the jet tree from data, embedding and pure pythia level.
 - Step 4: "asymmetry", calculate the final asymmetry
 - Final plots for run15

Part 1 & 2 : jet tree and embedding produce

• I only generate some jet tree from the MuDst files. The results are within 3% difference from Ting's jet tree root files.

Part 3 "analysis"

- Copy Ting's StRoot library from and compile: /star/u/tinglin/gpsf01/Run15/finalcode_Collins/finalPlots_20211122/run1 5/jettree/StRoot/
- Run through the whole data in some PID selected.
 - Number of entries difference is less than 1% compared with Ting's root files.
- Run through the whole embedding data. Results are same as Ting's files.
- Run through the whole pure pythia data. Results are same as Ting's files.
- Note: the data (jet tree), embedding , pythia root files that I use are from Ting's rootfiles. Not from Part 1 & 2 for code QA

Part 4 "asymmetry "

- Use all the root files from Ting: /star/u/tinglin/gpsf01/Run15/psn0782/run15/rootfile/*.root
- Repeat: Sivers asymmetry, Collins and Collins-like asymmetry
- Generate: PID, underlying event fractions, pure pion asymmetries for Collins, pure pion asymmetries for Collins-like
- Fix x-axis and y-axis and calculate the systematic uncertainty.
- Last, calculate pure kaon asymmetries for Collins

Final plots for run15

• Part 1: kinematic

Kinematic plots

Paper Fig. 5, 6

• Top rows are from code QA Plots.

FIG. 5. Distribution of charged hadrons within jets in the 2015 data as a function of the hadron longitudinal momentum fraction, z, in two different jet p_T bins. The blue points represent the data, and the red histograms show the simulation.

FIG. 6. Distribution of charged hadrons within jets in the 2015 data as a function of the hadron momentum transverse to the jet axis, j_T , in two different jet p_T bins. The blue points represent the data, and the red histograms show the simulation.

Charged hadrons in jets (paper Fig. 3)

FIG. 3. Distribution of the charged hadrons inside jets as a function of the hadron momentum transverse to the jet thrust axis, j_T , for jets with $6.0 < p_T < 7.1 \text{ GeV}/c$ and hadrons with 0.1 < z < 0.2. The lines show all the hadrons inside the jets, while the blue filled areas are the background from the off-axis cones before and after the upper j_T cut described in Eq. (3).

PID plots paper Fig.7 (code QA plots are on top)

FIG. 7. Left: The correlations of $n_{\sigma}(\pi)$ vs. m^2 for positively charged particles carrying momentum fractions of 0.1 < z < 0.13in jets with $8.4 < p_T < 9.9 \text{ GeV}/c$. Middle: Multi-Voigt profile fits to the m^2 distribution. Right: Multi-Gaussian fits to the $n_{\sigma}(\pi)$ distribution.

Charged particle fractions paper Fig. 8

FIG. 8. Charged particle fractions as a function of the hadron longitudinal momentum fraction, z, for charged particles that satisfy $-1 < n_{\sigma}(\pi) < 2$ (pion-rich region), in jets with 8.4 $< p_T < 9.9 \text{ GeV}/c$. The blue solid circles are π^+ , red squares are K^+ , green up triangles are protons and the black down triangles are positrons.

Figure 85: ϕ_H distribution before (left) and after (right) the η correction.

• Part 2: Sivers

Analysis Note Figure 92, paper Fig. 10

Analysis Note Figure 122, paper Fig. 11

• Part 3: Collins like

Analysis note Figure 100, paper Fig. 12

Figure 101: Collins Like asymmetry vs. zin different jet p_T range

code QA plot

Figure 102: Collins Like asymmetry vs. j_T in different z range

code QA plot

Figure 103: Collins Like asymmetry vs. j_T in different jet p_T range • Part 4: Collins

Analysis note Figure 94, paper Fig. 15

Figure 94: Collins asymmetry vs. p_T

Figure 95: Collins asymmetry vs. j_T in different z range

Figure 96: Collins asymmetry vs. z in different jet p_T range

Figure 97: Collins asymmetry vs. j_T in different jet p_T range

Figure 98: Collins asymmetry for K^{\pm} vs. p_T , vs. hadron z and hadron j_T

Figure 99: Collins asymmetry for proton vs. p_T vs. p_T , vs. hadron z and hadron j_T