Paper proposal: Transverse Single-Spin Asymmetry for Diffractive Electromagnetic Jets with $p^{\uparrow} + p$ Collisions at $\sqrt{s} =$ 200 GeV

Xilin Liang, for the PAs Dec, 13, 2024

Paper I[nformation](https://drupal.star.bnl.gov/STAR/blog/liangxl/Paper-Proposal-run-15-FMS-diffractive-EM-jet)

- [Title: Transverse Single-Spin As](https://drupal.star.bnl.gov/STAR/blog/liangxl/Paper-Proposal-run-15-FMS-diffractive-EM-jet)ymmetry for Di Jets with $p^{\uparrow} + p$ Collisions at $\sqrt{s} = 200$ GeV
- Target journal: PLB
- PAs: Kenneth Barish, Christopher Dilks, Carl Ga Kapukchyan, **Xilin Liang*** , Mriganka Mondal
- Webpage: https://drupal.star.bnl.gov/STAR/bl run-15-FMS-diffractive-EM-jet

Data sets and triggers

- Data sets: run15 pp transverse data, $\sqrt{s} = 200 \text{ GeV}$ (production_pp200trans_2015)
- Stream: st_fms
- Production type: MuDst ; Production tag: P15ik
- Trigger for FMS : FMS small board sum, FMS large board sum and FMS-JP.
	- Trigger list: FMS-JP0, FMS-JP1, FMS-JP2, FMS-sm-bs1, FMS-sm-bs2, FMS-smbs3, FMS-lg-bs1, FMS-lg-bs2, FMS-lg-bs3. (9 triggers)
- Trigger veto: FMS-LED
- STAR library: SL20a

Transverse Single-Spin Asymmetry (TSSA, A_N) Detector Left $\sigma_L - \sigma_R$ • $A_N =$ $\sigma_L + \sigma_R$

• pQCD predicts $A_N^{\vphantom{1}} \sim \frac{m_q \alpha_s}{n_\pi}$ $p_{\scriptsize T}$ ~ 0.001 Right

4

- Unexpectedly large A_N at forward region is observed in proton-proton collisions.
- Possible mechanism for large TSSA:
	- TMDs framework: Sivers effect and Collins effect
	- Twist-3 mechanism

Indication of large TSSA from diffractive process

• Previous analyses of A_N for forward π^0 and electromagnetic jets in $p^{\uparrow} + p$ collisions at STAR indicated that there might be non-trivial contributions to the large A_N from diffractive processes?

Single diffractive process and Rapidity gap events

• Single diffractive process (**SD**):

- 1. Only 1 EM-jet at FMS
- 2. Only 1 east RP track and it must be good RP track
- 3. East BBC veto (determine rapidity gap $-5 < \eta < -2.1$, about a η unit of 3)

Single Diffractive Event

- Rapidity gap events (**RG**):
	- 1. Only 1 EM-jet at FMS
	- 2. East BBC veto (determine rapidity gap $-5 < \eta < -2.1$, about a η unit of 3)
	- 3. No RP requirement

Rapidity Gap Event

Semi-exclusive process

- Semi-exclusive process (**SE**):
	- 1. Only 1 EM-jet at FMS
	- 2. Only 1 west RP track and it must be good RP track
	- 3. West BBC veto (rapidity gap is not large enough to consider as diffractive process)

Semi-exclusive Event

Systematic uncertainty for SD, RG, and SE events

- We use Bayesian method for systematic uncertainty study. (ref: arXiv:hepex/0207026)
- First of all, for the cuts we choose, varying each individual cut value for calculating the asymmetry. **The first three terms apply for all processes**
	- 1. Small BBC ADC sum cuts
	- 2. Large BBC ADC sum cuts
	- 3. Ring of Fire (exclude small-bs-3 trigger)
	- 4. E sum cut (**Only for SE events**)
	- 5. Background (**Only for SD and SE events**)
- The Barlow check is applied for the first four terms.
- The final systematic will be counted bin by bin (x_F bins): $\sigma_{\text{summary}} =$ $\overline{\Sigma_i(\sigma_i)^2}$

Abstract

• The STAR Collaboration reports the transverse single-spin asymmetry, A_N , for the electromagnetic jets (EM-jets) at forward rapidity (2.8 $< \eta < 3.8$) in diffractive processes as the function of EM-jet Feynman-x (x_F) and photon multiplicity in transversely polarized pp collisions at \sqrt{s} =200 GeV. Cases where either the unpolarized proton stays intact (single diffractive process) or the polarized proton stays intact (semi-exclusive process) are explored. A_N for the single diffractive process is consistent with A_N for inclusive EM-jet production. Furthermore, the cross section in single diffractive process compared to the inclusive process is small. The A_N in the semi-exclusive process has the opposite sign to the inclusive EM-jet A_N . These results show diffractive processes can not make a significant contribution to the large A_N found for inclusive EM-jet production at forward rapidity.

Fig. 1: Descripting different processes

Fig. 1: Four processes mentioned in this paper: (from top to bottom) inclusive process, rapidity gap event, single diffractive process, semi-exclusive process.

Study the single diffraction fraction in RG events

- We study the single diffraction fraction in RG events using the fraction of the SD events to the RG events from data and simulation.
	- SD simulation: Pythia 8: SoftQCD:singleDiffractive
- For the RG events in data, they contain the real SD (RSD) events and NSD events:
	- Frac(SD/RG in data)= SD $RSD+NSD$ =11.1%
	- Frac(SD/RG in sim) = SD RSD =16.1%
	- Assuming $\frac{SD}{per}$ RSD is same between data and simulation
- The SD fraction in RG events in data ($\frac{RSD}{DSD + M}$ $\frac{0.55}{RSD + NSD}$) is 68.7% ± 0.6%± 8.2%

Fig. 2: A_N for RG events

• About 68.7% of the RG events are single diffractive events.

Figure 2: A_N for rapidity gap events as a function of x_F for 3 different photon multiplicity cases: all photon multiplicity (top), 1 or 2 photon multiplicity (middle), and 3 or more photon multiplicity (bottom).

12

Fig. 3: A_N for single diffractive events

13

Fig. 4: Cross section fraction

- We calculate the cross section fraction as a furally
- The cross section fraction is: $\frac{\sigma_{SD}}{\sigma}$ σ_{inc} (single diffrad to the inclusive process (inc) cross section for A_N study
- The single diffractive process cross section is very small compared to the inclusive process cross section, which shows that it can not have significant contribution to the large A_N in inclusive process

Figure 4: Cross section fraction of the single diffractive process (σ_{SD}) to the inclusive process (σ_{inc}) as a function of x_F .

Fig. 5: Comparison plot of A_N for inclusive, single diffractive, and rapidity gap events

- The A_N for inclusive, single diffractive, and rapidity gap events are consistent within uncertainty
- The events with unpolarized proton intact are showing with the similar A_N as for inclusive process

Figure 5: A_N as a function of x_F for 3 processes for the case of photon multiplicity 1 or 2 (top panel) and photon multiplicity 3 or more (bottom panel) : inclusive process (red), single diffractive process (blue), and the rapidity gap

Fig. $6: A_{N}$ for semi-exclusive process

- Only 1 or 2 photon multiplicity
- Constant fit is applied to check the n-sigma significance for non-zero A_{N} value among these x_F regions.
- $\vec{\mathcal{L}}$ • Blue beam A_N is 3.1 σ to be non-zero.
	- Constant fit: -0.10 ± 0.032
	- χ^2/n . d. f: 1.17

• The EM-jet A_N is negative for events with polarized proton intact

Figure 6: A_N as a function of x_F for the semi-exclusive process with 1 or 2 photon multiplicity EM-jets.

Conclusion

- The non-zero A_N for single diffractive process and the semi-exclusive process are observed for the EM-jets with 1 or 2 photon multiplicity
- The A_N values for the single diffractive process with the unpolarized proton intact are consistent with A_N for inclusive process within uncertainty, showing that the single diffractive process can not provide evidence to have great contribution to the large A_N in the inclusive process
- The cross section fraction for single diffractive process to the inclusive process in the forward region is very small, so single diffractive process can not have major contribution to to the large A_N in the inclusive process
- The A_N value for semi-exclusive process with polarized proton intact is negative, which also can not have great contribution to the large A_N in the inclusive process

Back up

Event selection and corrections for SD process

• **FMS**

- 9 Triggers, veto on FMS-LED
- Only 1 EM-jet per event is allowed
- bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking)
- Jet reconstruction: StJetMaker2015, Anti-kT, R<0.7, FMS point energy > 1 GeV, $p_T > 2$ GeV/c, trigger p_T threshold cut, FMS point as input.
- **Only allow acceptable beam polarization (up/down).**

Corrections:

EM-jet energy correction and

- **Vertex** (Determine vertex z priority according to TPC , VPD, BBC.) Underlying Event correction
	- Vertex $|z| < 80$ cm

• **Roman Pot and Single Diffractive process:**

- Acceptable cases:
	- 1. Only 1 east RP track , no requirement on west RP
	- RP track must be good track:
	- a) Each track hits > 6 planes
	- b) East RP ξ dependent θ_X , θ_Y , P_X and P_Y cuts
	- c) East RP $0 < \xi < 0.15$

• East Large BBC ADC sum < 80 and East Small BBC ADC sum < 90 19

Event selection and corrections for RG process

• **FMS**

- 9 Triggers, veto on FMS-LED
- Only 1 EM-jet per event is allowed
- bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking)
- Jet reconstruction: StJetMaker2015, Anti-kT, R<0.7, FMS point energy > 1 GeV, $p_T > 2$ GeV/c, trigger p_T threshold cut, FMS point as input.
- **Only allow acceptable beam polarization (up/down).**

Corrections: EM-jet energy correction and

- **Vertex** (Determine vertex z priority according to TPC , VPD, BBC.) Underlying Event correction
	- Vertex $|z| < 80$ cm
- **No Roman Pot requirement**
- East Large BBC ADC sum < 80 and East Small BBC ADC sum < 90

Transverse single spin asymmetry (A_N) calculation

• We use cross ratio method to calculate the diffractive EM Jet A_N at FMS.

• Raw A_N:
$$
\varepsilon = \frac{\sqrt{N^{\dagger}(\phi)N^{\dagger}(\phi+\pi)} - \sqrt{N^{\dagger}(\phi)N^{\dagger}(\phi+\pi)}}{\sqrt{N^{\dagger}(\phi)N^{\dagger}(\phi+\pi)} + \sqrt{N^{\dagger}(\phi)N^{\dagger}(\phi+\pi)}} \approx pol * A_N * \cos(\phi)
$$

• Plot A_N as a function of x_F , or p_T ($x_F =$ $E_{EM\; jet}$ \overline{E}_{Beam})

• Divide full ϕ range $[-\pi, +\pi]$ into 16 bins.

Systematic uncertainty for SD and RG events

- We use Bayesian method for systematic uncertainty study. (ref: arXiv:hep- ex/0207026)
- First of all, for the cuts we choose, varying each individual cut value for calculating the asymmetry. **The first three terms apply for both processes**
	- Small BBC east ADC sum cuts: choose < 70, < 80, <100, <110 for systematic uncertainty
	- Large BBC east ADC sum cuts: choose < 60, < 70, <90, <100 for systematic uncertainty
	- Ring of Fire (get rid of small-bs-3 trigger)
	- Background (Only for SD events)
- Then, find out the maximum $(A_N(1) \pm \delta(1))$, with statistical uncertainty), and the minimum $(A_N(2) \pm \delta(2))$, with statistical uncertainty) for the varying cuts as systematic uncertainty.
- If the $\frac{|A_N(1)-A_N(2)|}{2}$ $| (\delta(1$ \overline{c} $- (\delta(2$ \overline{c} | > 1 (Barlow check), use the **standard deviation** of all the A_N from varying all the cuts for this systematic term (σ_i) , otherwise, the systematic (σ_i) , for this term will be assigned 0
- The final systematic will be counted bin by bin $(x_F \text{ bins})$: $\sigma_{\text{summary}} = \sqrt{\sum_i (\sigma_i)^2}$ $\qquad \qquad {}^{22}$

Systematic uncertainty results for SD process The background is estimated from

1 or 2 Photon multiplicity

3 or more Photon multiplicity

 0.017

Systematic uncertainty results for RG process

24

Apply the trigger threshold p_T cut

• The EM-jet p_T based on the trigger threshold are listed as follows, with 15% increase. Consistent with inclusive EM-jet A_N analysis

Energy correction

- Detector level to particle level correction.
	- 6-th order polynomial for [5, 10] GeV
	- Linear function for [10, 60] GeV

Particle level vs Detector level jet E

Polarization uncertainty

- $\sigma(P_{set}) = P_{set}$. $\sigma(scale)$ $\frac{a_{\textit{ue}}}{P} \oplus \sigma_{\textit{set}}(fill\ to\ fill) \oplus P_{\textit{set}}$
- $\sigma(scale)$ \boldsymbol{P} $= 3\%$ [1]

$$
\bullet \frac{\sigma(profile)}{P} = \frac{2.2\%}{\sqrt{M}} = 0.3\%^{[1]}
$$

• $\sigma^2_{set}(fill\ to\ fill) = (1 - \frac{M}{N})$ $\frac{N}{N}$ $\sum_{fill} L_{fill}^2 \sigma^2 (P_{fill}$ $\sum_{fill} L_{fill}^2 \sigma^2 (P_{fill}$ $\sum_{fill} L_{fill}^2 \sigma^2 (P_{fill}$ $(\sum_{fill} L_{fill})^2$

• σ_{set} (fill to fill) = 0.3%

•
$$
\sigma(P_{fill}) = \sigma(P_0) \oplus \sigma(\frac{dP}{dt}) (\frac{\sum_{run} t_{run}L_{run}}{L_{fill}} - t_0) \oplus \frac{\sigma(fill)}{L_{fill}}
$$

• so
$$
\sigma(P_{set}) = 3.0\%
$$

[1] W. B. Schmidke, **RHIC polarization for Runs 9-17** [2] Z. Chang Example calculation of fill-to-fill polarization uncertainties

Background study: FMS EM-jet and BBCE veto (RG)

- The process with FMS EM-jets and BBCE veto are one potential source of the background
	- The east BBC covers a unit of 3 for pseudorapidity gap. We call it Rapidity Gap event set (RG)
	- They are a subset of inclusive process
- The study of RG events also serves as additional enrichment for the inclusive process and help to separate the diffractive and nondiffractive process with the rapidity gap requirement.
- Also, we use this set of events to estimate the background fraction: about 1.8 -1.9% The random coincidence of the single diffractive events in the RG events is 0.2% (zerobias events)

$$
frac_{bkg} = \frac{n_{AC}}{n_{mea}} = \frac{n_{AC}}{n_{RG}} \times \frac{n_{RG}}{n_{mea}}
$$

28 Counting yields of each kinematic bins for RG events and measured FMS events

Event selection and corrections for SE process • **FMS**

- 9 Triggers, veto on FMS-LED
- bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking)
- Jet reconstruction: StJetMaker2015, Anti-kT, R<0.7, FMS point energy > 1 GeV, $p_T > 2$ GeV/c, trigger p_T threshold cut, FMS point as input.
- Only 1 EM-jet per event allowed
- **Only allow acceptable beam polarization (up/down).**
- **Vertex** (Determine vertex z priority according to TPC , VPD, BBC.)
	- Vertex $|z| < 80$ cm
- **Roman Pot and Semi-exclusive process:**
- Only 1 west RP track (no restriction on east RP track)
- RP track must be good track:
	- a) Each track hits > 6 planes
	- b) West RP ξ dependent θ_X , θ_Y , P_X and P_Y cuts
	- c) $0 < \xi < 0.45$
	- Sum of west RP track energy and all EM Jet energy (see detail in table)
- West Large BBC ADC sum < 60 and West Small BBC ADC sum < 80

Corrections:

EM-jet energy correction and Underlying Event correction

Systematic uncertainty

- We use Bayesian method for systematic uncertainty study. (ref: arXiv:hepex/0207026)
- First of all, for the cuts we choose, varying each individual cut value for calculating the asymmetry.
	- Small BBC west ADC sum cuts: choose < 60, < 70, <90, <100 for systematic uncertainty
	- Large BBC west ADC sum cuts: choose < 40, < 50, <70, <80 for systematic uncertainty
	- E sum cut, varying each cut by ±10 , and ±5 GeV, accordingly
	- Ring of Fire (get rid of small-bs-3 trigger) Blue beam A_{N}

Example: Small BBC west cuts

Each x_F set, from left to right: varying the cuts from original: $-20, -10, 0, +10, +20$

Calculating the systematic uncertainty (1 or 2 photon multiplicity)

- Then, find out the maximum $(A_N(1) \pm \delta(1)$, with statistical uncertainty), and the minimum $(A_N(2) \pm \delta(1)$ $\delta(2)$, with statistical uncertainty) for the varying cuts as systematic uncertainty.
- If the $\frac{|A_N(1)-A_N(2)|}{\sqrt{2\pi}}$ $|(\delta(1))^{2}-(\delta(2))^{2}|$ > 1 , use the **standard deviation** of all the A_N from varying all the cuts for this systematic term (σ_i) , otherwise, the systematic (σ_i) , for this term will be assigned 0
- The final systematic will be counted bin by bin $(x_F$ bins) : $\sigma_{sys} = \sqrt{\sum_i (\sigma_i)^2}$
- The background refers to the potential background in E sum, estimated using the mix event background (see back up slides)

Background study for E sum in SE process

- We use zerobias stream events to study the background shape for E sum spectrum for different EM-jet x_F ranges.
	- E sum (**background**)= E(EM-jet from **inclusive process**) + E(west RP from **zerobias**)
- Calculation: $Esum(i + j) = \sum_{i,j} P(i) * n(j)$, i are all possible energies (in 1 GeV bin) for specific x_F range; j are all possible energies (in 1 GeV bin) for west RP track energy (momentum) in zerobias data.
	- P(i) is the fraction for EM-jet yields in [i,i+1] (GeV) within the specific x_F range.
	- n(j) is the yields in west RP energy (momentum) in [j,j+1] (GeV).

Mix event energy sum study results

- We use zerobias stream events to study the background shape for E sum spectrum for different EM-jet x_F ranges.
	- E sum (**background**)= E(EM-jet from **inclusive process**) + E(west RP from **zerobias**)

Mix event background study results

- The background from mix event will be counted as systematic uncertainty results.
	- $frac =$ Integral of yields in signal region for mix event background

Intrgral of yields in signal region for FMS data

Estimating the cross section fraction

\n- The cross section fraction:
$$
\frac{\sigma(SD)}{\sigma(inc)}
$$
\n- $\sigma(SD) = \frac{N_{SD} * purity}{\mathcal{L} * \varepsilon_{RP} * \varepsilon_{BBC} * \varepsilon_{FMS} * \varepsilon_{trigger}}$
\n- $\sigma(inc) = \frac{N_{inc}}{\mathcal{L} * \varepsilon_{FMS} * \varepsilon_{trigger}}$
\n

• Since both analysis are using the same dataset, same triggers and same FMS detector, so we assume \mathcal{L} , ε_{FMS} , $\varepsilon_{trig, ger}$ are same in calculating for both single diffractive and inclusive cross section

• So,
$$
\frac{\sigma(SD)}{\sigma(inc)} = \frac{N_{SD} * purity}{N_{inc} * \varepsilon_{RP} * \varepsilon_{BBC}}
$$

Systematic uncertainty for the efficiency

• ε_{RP} : From the STAR central exclusive paper (JHEP07(2020)178, GPC #290):*Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at sqrt(s)=200 GeV with the STAR detector at RHIC* , the relative uncertainty of the RP efficiency is up to 6.5%

- ε_{RBC} : According to the STAR proposed paper (GPC #307): *Measurement of charged-particle production in single diffractive proton-proton collisions at \$\sqrt{s}=200\$ GeV with the STAR detector at RHIC* , the relative uncertainty of efficiency of the (small) BBC is up to 10% ($\delta \varepsilon_{BBC}/\varepsilon_{BBC}$).
	- The deviations between PYTHIA 8 and HERWIG models are of the order of 4% at 0.02 < ξ < 0.05, 2% at 0.05 < ξ < 0.1 and about 10% at 0.1 < ξ < 0.2. The differences between PYTHIA 8 and EPOS-LHC predictions are at the level of 3%, except nch \leq 3 for which the difference varies up to 6%. The maximum difference between PYTHIA 8 and HERWIG/EPOS-LHC hadronization models is used as the relative systematic uncertainty.

A_N for RG events

• About 68.7% of the RG events are single diffractive events.

Figure 2: A_N for rapidity gap events as a function of x_F for 3 different photon multiplicity cases: all photon multiplicity (top), 1 or 2 photon multiplicity (middle), and 3 or more photon multiplicity (bottom). The A_N for $x_F < 0$ (red points) shifts -0.013 along the x-axis.

A_N for single diffractive events

 $|x|$ F

| F

F

 < 100 GeV EM-jet 15 < E

 x_F^- < 0 (shifted by -0.013 along the horizontal axis)

3.0% polarization scale uncertainty not shown

 $2.8 < \eta^{\text{EM-jet}} < 3.8$ > 2.0 GeV/c

EM-jet p

STAR

s = 200 GeV

 $p^{\uparrow} + p \rightarrow EM$ jet + p + X

All photon multiplicity

 $x_F > 0$

A_{N} for semi-exclusive process

- Only 1 or 2 photon multiplicity
- Constant fit is applied to check the n-sigma significance for non-zero A_N value among these x_F regions.
- Blue beam A_N is 3.1 σ to be non-zero.
	- Constant fit: -0.10 ± 0.032
	- χ^2/n . d. f: 1.17
- Yellow beam A_N is 1.4 σ to be non-zero. o
	- Constant fit: -0.042 ± 0.031
	- χ^2/n . d. f: 1.36
- The EM-jet A_N is negative for events with polarized proton intact

Figure 6: A_N as a function of x_F for the semi-exclusive process with 1 or 2 photon multiplicity EM-jets. The blue points are for $x_F > 0$, while the red points are for $x_F < 0$.

