Run15 EM-jet A_N for Semi-exclusive process

Xilin Liang

Apr. 24, 2024

General Information for the data set

- Data set: run 15 pp transverse $\sqrt{s} = 200 \text{ GeV}$,fms stream
 - (production_pp200trans_2015)
- Production type: MuDst ; Production tag: P15ik
- Trigger for FMS : FMS small board sum, FMS large board sum and FMS-JP.
- EM-jet reconstruction: Anti- k_T algorithm with R=0.7
 - EM-jet: the jet reconstructed using only photons (FMS point)
 - FMS point minimum energy: **1** GeV (to match with inclusive process)

Semi-exclusive process with 1 west RP track

Semi-exclusive constrain the west side proton and FMS EM-jets West BBC veto is for minimizing the accidental coincidence.

$\xi = \frac{P_{beam} - P_{RP}}{P_{beam}}$ Outline for studying the RP cuts and BBC cuts

- Here are the idea and steps for considering the cuts for RP and BBC:
- 1. Since we reach to the agreement that the low BBC threshold should be applied, we first apply a rough cut on small BBC west < 150. Goal: explore a rough west RP P_X , P_Y cuts for different ξ range.
- 2. Apply the rough west RP P_X , P_Y cuts from step 1, study the small/large BBC west ADC distribution and consider further cuts for small/large BBC west cuts.
- 3. Apply the further cuts for west small/large BBC cuts, study the final west RP P_X, P_Y cuts, and θ_X , θ_Y cuts for different ξ range.

Rough west RP track θ_Y vs θ_X with different ξ ranges

0

2

4

6

 θ_x [mrad]

-2

0

2

4

6

 θ_{x} [mrad]

-6

-4

Rough west RP track θ_Y vs θ_X with different ξ ranges $(\xi = \frac{P_{beam} - P_{RP}}{P_{beam}})$

- Cuts applied at this stage: RP track hit at least 7 SSD planes , small BBC west < 150
- We can consider the rough west RP θ_Y cut: $1.5 < |\theta_Y| < 4 mrad$
- The rough west RP θ_X cut can be applied with ξ dependent
 - $0.0 < \xi < 0.05$: $-1 < \theta_X < 1.75$ mrad
 - $0.05 < \xi < 0.10$: $-1.5 < \theta_X < 1.5$ mrad
 - $0.10 < \xi < 0.15$: $-1.75 < \theta_X < 1.25$ mrad
 - $0.15 < \xi < 0.20$: $-2.5 < \theta_X < 1.25$ mrad
 - $0.20 < \xi < 0.25$: $-3 < \theta_X < 1 \text{ mrad}$
 - $0.25 < \xi < 0.30$: $-3.25 < \theta_X < 0.5$ mrad
 - $0.30 < \xi < 0.35$: $-3.75 < \theta_X < 0 \text{ mrad}$
 - $0.35 < \xi < 0.40$: $-4.25 < \theta_X < -0.5$ mrad
 - $0.40 < \xi < 0.45$: $-5 < \theta_X < -1$ mrad

West small and large BBC ADC sum after the rough west RP track θ_X and θ_Y cuts

- Temporally apply the rough west RP track θ_X and θ_Y cuts to study the west small and large BBC ADC sum.
- We can consider small BBC west ADC sum < 80 and large BBC west < 60

Final cut on the west RP track θ_X and θ_Y

- We apply the BBC cuts: BBC west ADC sum < 80 and large BBC west < 60
- We can consider the west RP θ_Y cut: $1.5 < |\theta_Y| < 4 mrad$
- The west RP θ_X cut can be applied with ξ dependent
 - $0.0 < \xi < 0.05$: $-1 < \theta_X < 1.75$ mrad
 - $0.05 < \xi < 0.1$: $-1.5 < \theta_X < 1.5$ mrad
 - $0.1 < \xi < 0.15$: $-1.75 < \theta_X < 1.25$ mrad
 - $0.15 < \xi < 0.2$: $-2 < \theta_X < 1 \text{ mrad}$
 - $0.2 < \xi < 0.25$: $-2.75 < \theta_X < 0.5$ mrad
 - $0.25 < \xi < 0.3$: $-3.25 < \theta_X < 0.5$ mrad
 - $0.3 < \xi < 0.35$: $-3.75 < \theta_X < 0$ mrad
 - $0.35 < \xi < 0.4$: $-4.5 < \theta_X < -0.5$ mrad
 - $0.4 < \xi < 0.45$: $-5.5 < \theta_X < -1.25$ mrad

West Roman Pot trk θ_v vs θ_x (0.25 < ξ < 0.30)

West Roman Pot trk θ_y vs θ_x (0.40 < ξ < 0.45)

-2

-3

40

20

2

 θ_x [mrad]

-1

0

1

Final west RP track P_X and P_Y cuts

- In addition to the west small/large BBC cuts and west RP track θ_X and θ_Y cuts, we apply the west RP track P_X and P_Y cuts:
- $0.0 < \xi < 0.05$: $(P_X 0.03)^2 + (|P_Y| 0.18)^2 < 0.14^2$ and $0.18 < |P_Y| < 0.32$
- $0.05 < \xi < 0.1$: $(P_X 0.01)^2 + (|P_Y| 0.18)^2 < 0.14^2$ and $0.18 < |P_Y| < 0.32$
- $0.1 < \xi < 0.15$: $(P_X + 0.02)^2 + (|P_Y| 0.16)^2 < 0.14^2$ and $0.16 < |P_Y| < 0.3$
- $0.15 < \xi < 0.2$: $(P_X + 0.04)^2 + (|P_Y| 0.16)^2 < 0.12^2$ and $0.16 < |P_Y| < 0.28$
- $0.2 < \xi < 0.25$: $(P_X + 0.07)^2 + (|P_Y| 0.14)^2 < 0.12^2$ and $0.14 < |P_Y| < 0.26$
- $0.25 < \xi < 0.3$: $(P_X + 0.1)^2 + (|P_Y| 0.14)^2 < 0.12^2$ and $0.14 < |P_Y| < 0.26$
- $0.3 < \xi < 0.35$: $(P_X + 0.11)^2 + (|P_Y| 0.12)^2 < 0.12^2$ and $0.12 < |P_Y| < 0.24$
- $0.35 < \xi < 0.4$: $(P_X + 0.14)^2 + (|P_Y| 0.12)^2 < 0.11^2$ and $0.12 < |P_Y| < 0.23$
- $0.4 < \xi < 0.45$: $(P_X + 0.17)^2 + (|P_Y| 0.12)^2 < 0.1^2$ and $0.12 < |P_Y| < 0.22$

Energy sum plot for case with only 1 west RP track

Therefore, we can

sum cuts below:

consider the energy

- Sum energy: E(west RP track) + E(EM-jet)
- Applying cuts with west small/large BBC, RP track and FMS EM-jets.

Event selection and corrections

- FMS
 - 9 Triggers, veto on FMS-LED
 - bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking)
 - Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 1 GeV, p_T > 2 GeV/c, trigger p_T threshold cut, FMS point as input.
 - Only 1 EM-jet per event allowed
- Only allow acceptable beam polarization (up/down).
- **Vertex** (Determine vertex z priority according to TPC , VPD, BBC.)
 - Vertex $|z| < 80 \ cm$
- Roman Pot and Semi-exclusive process:
- Only 1 west RP track (no restriction on east RP track)
- RP track must be good track:
 - a) Each track hits > 6 planes
 - b) West RP ξ dependent θ_X , θ_Y , P_X and P_Y cuts
 - c) $0 < \xi < 0.45$
 - Sum of west RP track energy and all EM Jet energy (see detail in table)
- West Large BBC ADC sum < 60 and West Small BBC ADC sum < 80

Corrections:

EM-jet energy correction and Underlying Event correction

x _F	E sum Cut
0.2 - 0.25	E _{sum} < 110 GeV
0.25 - 0.3	E _{sum} < 110 GeV
0.3 – 0.35	E _{sum} < 115 GeV
0.35 – 0.4	E _{sum} < 115 GeV
0.4 – 0.45	E _{sum} < 120 GeV

Background study for E sum

- We use zerobias stream events to study the background shape for E sum spectrum for different EM-jet x_F ranges.
 - E sum (background) = E(EM-jet from inclusive process) + E(west RP from zerobias)
- Calculation: $Esum(i + j) = \sum_{i,j} P(i) * n(j)$, i are all possible energies (in 1 GeV bin) for specific x_F range ; j are all possible energies (in 1 GeV bin) for west RP track energy (momentum) in zerobias data.
 - P(i) is the fraction for EM-jet yields in [i,i+1] (GeV) within the specific x_F range .
 - n(j) is the yields in west RP energy (momentum) in [j,j+1] (GeV).

Mix event energy sum study results We use zerobias stream events to study the background shape for E sum

- We use zerobias stream events to study the background shape for E sum spectrum for different EM-jet x_F ranges.
 - E sum (background) = E(EM-jet from inclusive process) + E(west RP from zerobias)

Mix event background study results

- The background from mix event will be counted as systematic uncertainty results.
 - $frac = \frac{Integral \ of \ yields \ in \ signal \ region \ for \ mix \ event \ background}{Intrgral \ of \ yields \ in \ signal \ region \ for \ FMS \ data}$

x _F	Signal region	Frac of background (%)
0.2 - 0.25	E _{sum} < 110 GeV	1.3
0.25 - 0.3	E _{sum} < 110 GeV	1.3
0.3 – 0.35	E _{sum} < 115 GeV	2.1
0.35 – 0.4	E _{sum} < 115 GeV	2.0
0.4 – 0.45	E _{sum} < 120 GeV	2.7

Systematic uncertainty

- We use Bayesian method for systematic uncertainty study. (ref: arXiv:hep-ex/0207026)
- First of all, for the cuts we choose, varying each individual cut value for calculating the asymmetry.
 - Small BBC west ADC sum cuts: choose < 60, < 70, <90, <100 for systematic uncertainty
 - Large BBC west ADC sum cuts: choose < 40, < 50, <70, <80 for systematic uncertainty
 - E sum cut, varying each cut by ±10, and ±5 GeV, accordingly
 - Ring of Fire (get rid of small-bs-3 trigger) Blue beam A_N

Example: Small BBC west cuts

Each x_F set, from left to right: varying the cuts from original: -20, -10, 0, +10, +20

x _F	E sum Cut
0.2 - 0.25	E _{sum} < 110 GeV
0.25 - 0.3	E _{sum} < 110 GeV
0.3 – 0.35	E _{sum} < 115 GeV
0.35 – 0.4	E _{sum} < 115 GeV
0.4 – 0.45	E _{sum} < 120 GeV

A_N results for varying the cuts (systematic)

1 or 2 photon multiplicity EM-jet

Each x_F set, from left to right: varying the cuts from original: -20, -10, 0, +10, +20

Each x_F set, from left to right: varying the cuts from original: -10, -5, 0, +5, +10 (GeV)

Each x_F set, from left to right: Apply Ring of Fire cut, do not apply Ring of Fire cut

Calculating the systematic uncertainty (1 or 2 photon multiplicity)

- Then, find out the maximum $(A_N(1) \pm \delta(1)$, with statistical uncertainty), and the minimum $(A_N(2) \pm \delta(2)$, with statistical uncertainty) for the varying cuts as systematic uncertainty.
- If the $\frac{|A_N(1) A_N(2)|}{\sqrt{|(\delta(1))^2 (\delta(2))^2|}} > 1$, use the **standard deviation** of all the A_N from varying all the

cuts for this systematic term (σ_i), otherwise, the systematic (σ_i), for this term will be assigned 0

• The final systematic will be counted bin by bin (x_F bins) : $\sigma_{sys} = \sqrt{\sum_i (\sigma_i)^2}$

Blue beam X _F	Small BBC west	Large BBC west	Ring of Fire	Energy sum	Background	Summary	Yellow beam x _F	Small BBC west	Large BBC west	Ring of Fire	Energy sum	Background	Summary
0.2 - 0.25	0	0.033	0	0.028	0.0033	0.043	0.2 - 0.25	0.018	0.014	0	0	0.00059	0.023
0.25 - 0.3	0.0081	0.021	0	0	0.0031	0.023	0.25 - 0.3	0.012	0	0.0045	0.027	0.00068	0.030
0.3 – 0.35	0.0058	0	0.010	0.011	0.0027	0.017	0.3 – 0.35	0	0.015	0	0.0012	0.0011	0.019
0.35 – 0.4	0.0072	0.011	0	0.040	0.0011	0.041	0.35 – 0.4	0	0.010	0.017	0	0.0042	0.020
0.4 – 0.45	0.012	0.015	0	0	0.0045	0.019	0.4 – 0.45	0	0	0	0.011	0.0032	0.012

A_N results for 1 or 2 photon multiplicity

- Only 5 x_F bins are considered: [0.2,0.25], [0.25,0.3], [0.3,0.35], [0.35,0.4], [0.4,0.45]
- 1 or 2 photon multiplicity
- Constant fit is applied to calculate the significance of non-zero

Conclusion

- The non-zero blue beam $\rm A_N$ with 3.1 σ significant is observed for the semi-exclusive process.
- Most of the blue beam A_N are with negative values. We need more theories to explain such behavior.
- The semi-exclusive process also can not provide evidences to contribute to large A_N in inclusive process.
- The analyses for run 15 diffractive EM-jet A_N measurement are closing to complete. We will have paper proposal soon.