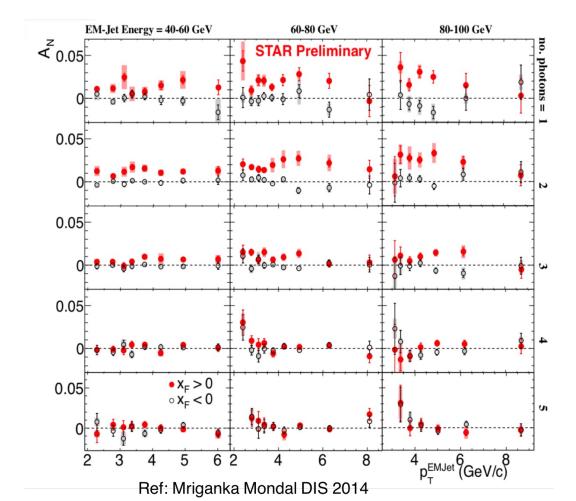
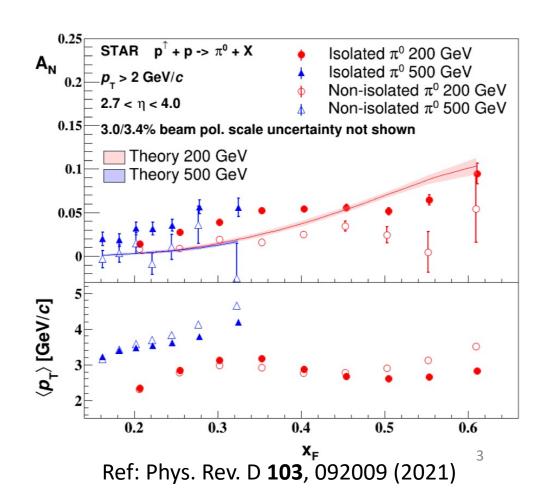
Single diffractive EM Jet A_N at FMS with run 15 data preliminary request

Xilin Liang


Apr. 1, 2024


Contact information

- PA: Kenneth Barish, Christopher Dilks, Carl Gagliardi, Latif Kabir, Xilin Liang, Mriganka Mondal
- PA email address: xilin.liang@email.ucr.edu

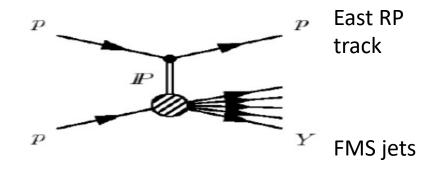
Physics motivation

- Diffractive process may play a role to explain large A_N .
 - A_N decreases with Increasing number of photons in EM jets.
 - Isolated π^0 events have larger A_N .

Data sets and triggers

- Data sets: run15 pp transverse data , $\sqrt{s} = 200~GeV$ (production_pp200trans_2015)
- Stream: st_fms
- Production type: MuDst; Production tag: P15ik
- Trigger for FMS: FMS small board sum, FMS large board sum and FMS-JP.
 - Trigger list: FMS-JP0, FMS-JP1, FMS-JP2, FMS-sm-bs1, FMS-sm-bs2, FMS-sm-bs3, FMS-lg-bs1, FMS-lg-bs2, FMS-lg-bs3. (9 triggers)
- Requirement: Event must also contain at least 1 Roman Pot track.
- Trigger veto: FMS-LED
- STAR library: SL20a

Single diffractive EM-jet A_N using FMS


Motivation and goal: study the A_N for diffractive process and explore its contribution for large A_N in inclusive processes

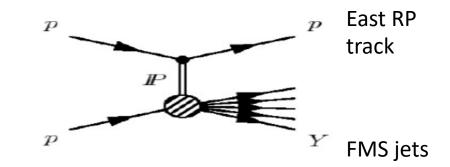
Determine the single diffractive process (SD):

only 1 proton track on east side RP. No west side RP track requirement. FMS EM-jet on the west side.

Require: small and large BBC east cut

East	Rapidity	FMS
proto	n gap	Jet

Event selection and corrections for SD process


• FMS

- 9 Triggers, veto on FMS-LED
- Only 1 EM-jet per event is allowed
- bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking)
- Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 1 GeV, $p_T>2$ GeV/c, trigger $\rm p_T$ threshold cut, FMS point as input.
- Only allow acceptable beam polarization (up/down).

Corrections:

EM-jet energy correction and

- Vertex (Determine vertex z priority according to TPC, VPD, BBC.) Underlying Event correction
 - Vertex |z| < 80 cm
- Roman Pot and Single Diffractive process:
- Acceptable cases:
 - 1. Only 1 east RP track, no requirement on west RP
 - RP track must be good track:
 - a) Each track hits > 6 planes
 - b) East RP ξ dependent θ_X , θ_Y , P_X and P_Y cuts
 - c) East RP $0 < \xi < 0.15$

• East Large BBC ADC sum < 80 and East Small BBC ADC sum < 90

Background study: FMS EM-jet and BBCE veto (RG)

- The process with FMS EM-jets and BBCE veto are one potential source of the background
 - The east BBC covers a unit of 3 for pseudorapidity gap. We call it Rapidity Gap event set (RG)
 - They are a subset of inclusive process
- The study of RG events also serves as additional enrichment for the inclusive process and help to separate the diffractive and nondiffractive process with the rapidity gap requirement.
- Also, we use this set of events to estimate the background fraction: about 1.8 -1.9% The random coincidence of the single diffractive events in the RG events is

$$frac_{bkg} = \frac{n_{AC}}{n_{mea}} = \frac{n_{AC}}{n_{RG}} \times \frac{n_{RG}}{n_{mea}}$$

Counting yields of each kinematic bins for RG events and measured FMS events

Event selection and corrections for RG process

• FMS

- 9 Triggers, veto on FMS-LED
- Only 1 EM-jet per event is allowed
- bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking)
- Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 1 GeV, $p_T>2$ GeV/c, trigger ${\bf p_T}$ threshold cut, FMS point as input.

Only allow acceptable beam polarization (up/down).

Corrections:

EM-jet energy correction and

Underlying Event correction

- Vertex (Determine vertex z priority according to TPC, VPD, BBC.)
 - Vertex |z| < 80 cm
- No Roman Pot requirement
- East Large BBC ADC sum < 80 and East Small BBC ADC sum < 90

Systematic uncertainty for SD and RG events

- We use Bayesian method for systematic uncertainty study. (ref: arXiv:hep-ex/0207026)
- First of all, for the cuts we choose, varying each individual cut value for calculating the asymmetry. **The first three terms apply for both processes**
 - Small BBC east ADC sum cuts: choose < 70, < 80, <100, <110 for systematic uncertainty
 - Large BBC east ADC sum cuts: choose < 60, < 70, <90, <100 for systematic uncertainty
 - Ring of Fire (get rid of small-bs-3 trigger)
 - Background (Only for SD events)
- Then, find out the maximum $(A_N(1) \pm \delta(1)$, with statistical uncertainty), and the minimum $(A_N(2) \pm \delta(2)$, with statistical uncertainty) for the varying cuts as systematic uncertainty.
- If the $\frac{|A_N(1)-A_N(2)|}{\sqrt{|(\delta(1))^2-(\delta(2))^2|}} > 1$ (Barlow check), use the **standard deviation** of all the A_N from varying all the cuts for this systematic term (σ_i) , otherwise, the systematic (σ_i) ,

from varying all the cuts for this systematic term (σ_i), otherwise, the systematic (σ_i) for this term will be assigned 0

• The final systematic will be counted bin by bin $(x_F \text{ bins})$: $\sigma_{summay} = \sqrt{\sum_i (\sigma_i)^2}$

Systematic uncertainty results for SD process

All Photon multiplicity

Blue beam X _F	Small BBC east	Large BBC east	Ring of Fire	Background	Summary
0.2 - 0.25	0.0026	0.0041	0	0.0044	0.0064
0.25 - 0.3	0	0	0.0022	0.0034	0.0041
0.3 – 0.35	0	0.0020	0	0.0032	0.0037
0.35 – 0.4	0.0017	0.0034	0	0.0035	0.0052
0.4 - 0.45	0.0022	0.0052	0.012	0.0041	0.014

Yellow beam X _F	Small BBC east	Large BBC east	Ring of Fire	Background	Summary
0.2 - 0.25	0.0027	0.0054	0	0.0043	0.0074
0.25 - 0.3	0.0028	0.0025	0	0.0034	0.0051
0.3 – 0.35	0	0.0046	0	0.0031	0.0056
0.35 - 0.4	0.0018	0.0048	0.0051	0.0035	0.0080
0.4 - 0.45	0.0013	0.0022	0	0.0040	0.0048

1 or 2 Photon multiplicity

Blue beam X _F	Small BBC east	Large BBC east	Ring of Fire	Background	Summary
0.2 - 0.25	0.0040	0.0033	0	0.0057	0.0077
0.25 - 0.3	0.0024	0	0.0022	0.0046	0.0056
0.3 - 0.35	0.0018	0.0018	0	0.0044	0.0051
0.35 - 0.4	0.0032	0.0034	0	0.0047	0.0066
0.4 - 0.45	0.0055	0.0072	0.022	0.0052	0.024

Yellow beam X _F	Small BBC east	Large BBC east	Ring of Fire	Background	Summary
0.2 - 0.25	0.0035	0	0	0.0056	0.0065
0.25 - 0.3	0.0021	0.0035	0	0.0045	0.0061
0.3 – 0.35	0.0025	0.0041	0	0.0043	0.0064
0.35 - 0.4	0	0.0062	0	0.0046	0.0077
0.4 - 0.45	0.0016	0.0036	0.020	0.0052	0.021

3 or more Photon multiplicity

Blue beam X _F	Small BBC east	Large BBC east	Ring of Fire	Background	Summary
0.2 - 0.25	0	0.0076	0	0.0068	0.010
0.25 - 0.3	0.0022	0.0028	0.0023	0.0051	0.0066
0.3 – 0.35	0	0	0	0.0046	0.0046
0.35 - 0.4	0	0.0047	0.0076	0.0055	0.010
0.4 – 0.45	0.0035	0.0053	0	0.0066	0.0091

Yellow beam X _F	Small BBC east	Large BBC east	Ring of Fire	Background	Summary
0.2 - 0.25	0.0098	0.014	0	0.0067	0.019
0.25 - 0.3	0.0037	0.0033	0	0.0046	0.0071
0.3 - 0.35	0.0030	0.0081	0.0046	0.0045	0.011
0.35 - 0.4	0.0037	0.0047	0.0051	0.0052	0.011
0.4 - 0.45	0	0	0.015	0.0065	0.9157

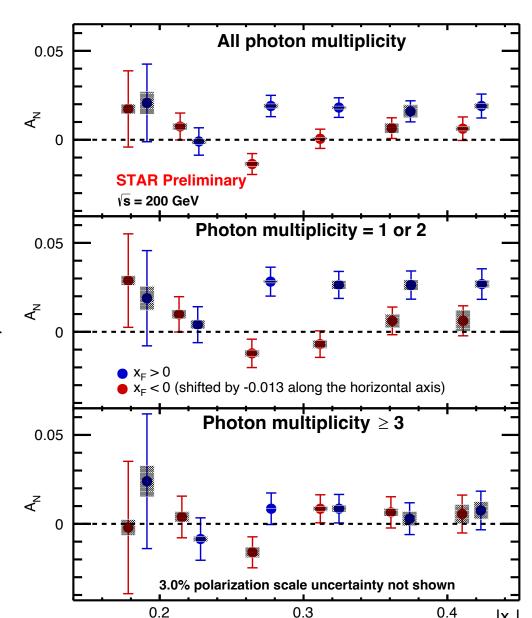
Systematic uncertainty results for RG process

All Photon

Blue beam X _F	Small BBC east	Large BBC east	Ring of Fire	Summary
0.1 - 0.2	0	0.0064	0	0.0064
0.2 - 0.25	0.0016	0	0	0.0016
0.25 - 0.3	0.00051	0.00096	0.00042	0.0011
0.3 – 0.35	0.00084	0	0	0.00084
0.35 – 0.4	0.0014	0	0.0033	0.0036
0.4 - 0.45	0.0010	0.0011	0	0.0015

o ultiplicity				
multiplicity Yellow beam X _F	Small BBC east	Large BBC east	Ring of Fire	Summary
0.1 - 0.2	0.0027	0	0	0.0027
0.2 - 0.25	0.00052	0.0019	0	0.0019
0.25 - 0.3	0.00064	0.0012	0	0.0013
0.3 – 0.35	0.00066	0.00047	0	0.00081
0.35 – 0.4	0.00092	0.0013	0.0023	0.0029
0.4 – 0.45	0	0.0012	0	0.0012

				1
Blue beam X _F	Small BBC east	Large BBC east	Ring of Fire	Summary
0.1 - 0.2	0.0028	0.0061	0	0.0067
0.2 - 0.25	0.0018	0.0019	0	0.0026
0.25 - 0.3	0	0	0.00070	0.00070
0.3 – 0.35	0.00094	0	0.0023	0.0025
0.35 – 0.4	0.0024	0.0017	0	0.0030
0.4 – 0.45	0.00074	0.0019	0	0.0020


1 or 2 Photon	multiplicity	/	I		
		Small BBC east	Large BBC east	Ring of Fire	Summary
	0.1 - 0.2	0.0027	0	0	0.0027
	0.2 - 0.25	0.00081	0.0024	0	0.0018
	0.25 - 0.3	0.0015	0.0011	0	0.0019
	0.3 – 0.35	0.00086	0.0011	0.0017	0.0022
	0.35 - 0.4	0	0.0015	0.0034	0.0037
	0.4 - 0.45	0.00069	0	0.0059	0.0060

Blue beam X _F	Small BBC east	Large BBC east	Ring of Fire	Summary
0.1 - 0.2	0	0.0088	0	0.0088
0.2 - 0.25	0.0015	0	0	0.0015
0.25 - 0.3	0	0	0	0
0.3 – 0.35	0.00082	0	0.0018	0.0020
0.35 - 0.4	0	0	0.0040	0.0040
0.4 - 0.45	0.0028	0.0021	0.0036	0.0050

3		ton multip Yellow beam X _F	licity Small BBC east	Large BBC east	Ring of Fire	Summary
		0.1 - 0.2	0.0045	0	0	0.0045
		0.2 - 0.25	0	0.0028	0	0.0028
		0.25 - 0.3	0.0014	0.0026	0	0.0029
		0.3 – 0.35	0.0014	0	0	0.0014
		0.35 – 0.4	0.0017	0.0014	0	0.0022
		0.4 – 0.45	0.0017	0.0021	0.0046	0.0053

Preliminary plot 1: A_N for RG events

Preliminary figure 1: A_N for rapidity gap events as a function of x_F for 3 different photon multiplicity cases: all photon multiplicity (top), 1 or 2 photon multiplicity (middle), and 3 or more photon multiplicity (bottom). The A_N for $x_F < 0$ (red points) shifts -0.013 along the x-axis.

Preliminary plot 2: A_N for single diffractive events

Blue beam A_N is 2.7 σ to be non-zero for EM-jet with all photon multiplicity.

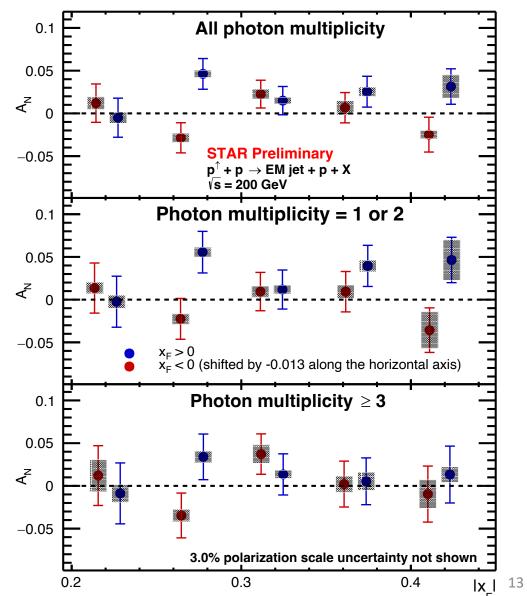
Constant fit: 0.024 ± 0.0089

 $\chi^2/n.d.f:0.83$

Blue beam A_N is 2.5 σ to be non-zero for EM-jet with 1 or 2 photon multiplicity.

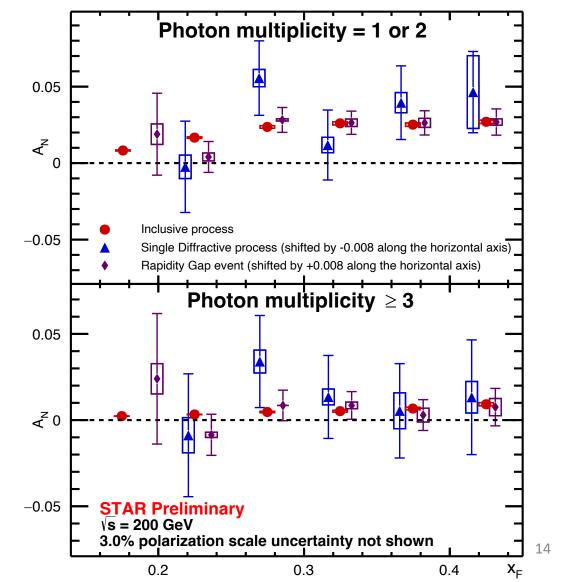
Constant fit: 0.030 ± 0.012

 $\chi^2/n.d.f$: 0.78


Blue beam A_N is 1.0 σ to be non-zero for EM-jet with 3 or more photon multiplicity.

Constant fit: 0.014 ± 0.013

 $\chi^2/n.d.f:0.25$


Yellow beam A_N is consistent with zero for all cases.

Preliminary figure 2: A_N for single diffractive events as a function of x_F for 3 different photon multiplicity cases: all photon multiplicity (top), 1 or 2 photon multiplicity (middle), and 3 or more photon multiplicity (bottom). The A_N for $x_F < 0$ (red points) shifts -0.013 along the x-axis.

Preliminary plot 3 (updated): Comparison plot of A_N for inclusive, single diffractive, and rapidity gap events

Preliminary figure 3: A_N as a function of x_F for 3 processes for the case of photon multiplicity 1 or 2 (top panel) and photon multiplicity 3 or more (bottom panel): inclusive process (red), single diffractive process (blue), and the rapidity gap events (magenta)

Conclusion

- The EM-jet A_N for single diffractive process is observed with more than 2 sigma non-zero significant.
- The EM-jet A_N for single diffractive process does not provide strong evidence that the diffractive process can contribute to large A_N for inclusive process