## Single diffractive EM Jet A<sub>N</sub> at FMS with run 15 data preliminary request

Xilin Liang

Mar. 6, 2024

#### Contact information

- PA: Kenneth Barish, Christopher Dilks, Carl Gagliardi, Latif Kabir, Xilin Liang, Mriganka Mondal
- PA email address: xilin.liang@email.ucr.edu

### Physics motivation

- Diffractive process may play a role to explain large  $A_N$ .
  - $A_N$  decreases with Increasing number of photons in EM jets.
  - Isolated  $\pi^0$  events have larger  $A_N$ .





### Data sets and triggers

- Data sets: run15 pp transverse data ,  $\sqrt{s} = 200 \ GeV$  (production\_pp200trans\_2015)
- Stream: st\_fms
- Production type: MuDst ; Production tag: P15ik
- Trigger for FMS : FMS small board sum, FMS large board sum and FMS-JP.
  - Trigger list: FMS-JP0, FMS-JP1, FMS-JP2, FMS-sm-bs1, FMS-sm-bs2, FMS-smbs3, FMS-lg-bs1, FMS-lg-bs2, FMS-lg-bs3. (9 triggers)
- Requirement: Event must also contain at least 1 Roman Pot track.
- Trigger veto: FMS-LED
- STAR library: SL20a

### Single diffractive EM-jet $A_N$ using FMS

**Motivation and goal**: study the  $A_N$  for diffractive process and explore its contribution for large  $A_N$  in inclusive processes

#### **Determine the single diffractive process (SD):**

only 1 proton track on east side RP. No west side RP track requirement. FMS EM-jet on the west side. Require: small and large BBC east cut

| East  |   | Rapidity | FMS |
|-------|---|----------|-----|
| proto | n | gap      | Jet |



### Event selection and corrections for SD process

#### • FMS

- 9 Triggers, veto on FMS-LED
- Only 1 EM-jet per event is allowed
- bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking)
- Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 1 GeV,  $p_T$  > 2 GeV/c, trigger  $p_T$  threshold cut, FMS point as input.
- Only allow acceptable beam polarization (up/down).

#### **Underlying Event correction** • **Vertex** (Determine vertex z priority according to TPC, VPD, BBC.)

• Vertex  $|z| < 80 \ cm$ 

#### **Roman Pot and Single Diffractive process:**

- Acceptable cases:
  - 1. Only 1 east RP track , no requirement on west RP
  - RP track must be good track:
  - Each track hits > 6 planes a)
  - East RP  $\xi$  dependent  $\theta_X$ ,  $\theta_Y$ ,  $P_X$  and  $P_Y$  cuts b)
  - East RP  $0 < \xi < 0.15$ c)

#### East Large BBC ADC sum < 80 and East Small BBC ADC sum < 90</li>



#### 6

#### **Corrections:**

EM-jet energy correction and

### Background study: FMS EM-jet and BBCE veto (RG)

- The process with FMS EM-jets and BBCE veto are one potential source of the background
  - The east BBC covers a unit of 3 for pseudorapidity gap. We call it Rapidity Gap event set (RG)
  - They are a subset of inclusive process
- The study of RG events also serves as additional enrichment for the inclusive process and help to separate the diffractive and non-diffractive process with the rapidity gap requirement.
- Also, we use this set of events to estimate the background fraction: about 1.8 -1.9%
  The random coincidence of the single diffractive events in the RG events is 0.2% (zerobias events)

$$frac_{bkg} = \frac{n_{AC}}{n_{mea}} = \frac{n_{AC}}{n_{RG}} \times \frac{n_{RG}}{n_{mea}}$$

Counting yields of each kinematic
bins for RG events and measured
FMS events

### Event selection and corrections for RG process

#### • FMS

- 9 Triggers, veto on FMS-LED
- Only 1 EM-jet per event is allowed
- bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking)
- Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 1 GeV,  $p_T$  > 2 GeV/c, trigger  $p_T$  threshold cut, FMS point as input.
- Only allow acceptable beam polarization (up/down).

#### **Corrections:**

EM-jet energy correction and

#### • Vertex (Determine vertex z priority according to TPC, VPD, BBC.) Underlying Event correction

- Vertex  $|z| < 80 \ cm$
- No Roman Pot requirement
- East Large BBC ADC sum < 80 and East Small BBC ADC sum < 90

### Systematic uncertainty for SD and RG events

- We use Bayesian method for systematic uncertainty study. (ref: arXiv:hep-ex/0207026)
- First of all, for the cuts we choose, varying each individual cut value for calculating the asymmetry. The first three terms apply for both processes
  - Small BBC east ADC sum cuts: choose < 70, < 80, <100, <110 for systematic uncertainty
  - Large BBC east ADC sum cuts: choose < 60, < 70, <90, <100 for systematic uncertainty
  - Ring of Fire (get rid of small-bs-3 trigger)
  - Background (Only for SD events)
- Then, find out the maximum  $(A_N(1) \pm \delta(1))$ , with statistical uncertainty), and the minimum  $(A_N(2) \pm \delta(2))$ , with statistical uncertainty) for the varying cuts as systematic uncertainty.
- If the  $\frac{|A_N(1)-A_N(2)|}{\sqrt{|(\delta(1))^2-(\delta(2))^2|}} > 1$  (Barlow check), use the **standard deviation** of all the  $A_N$  from varying all the cuts for this systematic term ( $\sigma_i$ ), otherwise, the systematic ( $\sigma_i$ ), for this term will be assigned 0
- The final systematic will be counted bin by bin ( $x_F$  bins) :  $\sigma_{summay} = \sqrt{\sum_i (\sigma_i)^2}$

### Systematic uncertainty results for SD process

| Blue beam X <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Background | All Photon r | nultiplicity<br>Yellow beam X <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Background | Summary |
|--------------------------|----------------|----------------|--------------|------------|--------------|--------------------------------------------|----------------|----------------|--------------|------------|---------|
| 0.1 - 0.2                | 0.0043         | 0.0037         | 0            | 0.0035     | 0.0067       | 0.1 - 0.2                                  | 0              | 0.0040         | 0            | 0.0034     | 0.0052  |
| 0.2 - 0.25               | 0.0015         | 0              | 0            | 0.0032     | 0.0035       | 0.2 - 0.25                                 | 0.0019         | 0.0023         | 0.0012       | 0.0031     | 0.0045  |
| 0.25 - 0.3               | 0              | 0.0022         | 0.0029       | 0.0029     | 0.0037       | 0.25 - 0.3                                 | 0.0020         | 0.0017         | 0            | 0.0028     | 0.0039  |
| 0.3 – 0.35               | 0              | 0              | 0            | 0.0028     | 0.0028       | 0.3 – 0.35                                 | 0.0016         | 0.0035         | 0            | 0.0028     | 0.0048  |
| 0.35 – 0.4               | 0.0018         | 0.0029         | 0            | 0.0032     | 0.0047       | 0.35 – 0.4                                 | 0              | 0.0029         | 0            | 0.0031     | 0.0043  |
| 0.4 – 0.45               | 0.0027         | 0.0041         | 0.011        | 0.0039     | 0.013        | 0.4 - 0.45                                 | 0.0014         | 0              | 0            | 0.0038     | 0.0040  |

|                          |                |                |              |            | 1 or 2 Photon | multiplicit                | y              |                | <u>.</u>     |            |         |
|--------------------------|----------------|----------------|--------------|------------|---------------|----------------------------|----------------|----------------|--------------|------------|---------|
| Blue beam X <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Background | Summary       | Yellow beam X <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Background | Summary |
| 0.1 - 0.2                | 0.0063         | 0.0077         | 0            | 0.0042     | 0.011         | 0.1 - 0.2                  | 0.0022         | 0.0033         | 0            | 0.0041     | 0.0057  |
| 0.2 - 0.25               | 0.0025         | 0              | 0.0015       | 0.0040     | 0.0050        | 0.2 - 0.25                 | 0              | 0.0029         | 0.0019       | 0.0039     | 0.0053  |
| 0.25 - 0.3               | 0.0021         | 0              | 0.0026       | 0.0038     | 0.0050        | 0.25 - 0.3                 | 0.0017         | 0.0019         | 0            | 0.0037     | 0.0045  |
| 0.3 – 0.35               | 0.0015         | 0              | 0            | 0.0038     | 0.0041        | 0.3 – 0.35                 | 0.0024         | 0.0026         | 0            | 0.0036     | 0.0051  |
| 0.35 – 0.4               | 0.0029         | 0              | 0            | 0.0041     | 0.0050        | 0.35 – 0.4                 | 0              | 0.0035         | 0            | 0.0040     | 0.0053  |
| 0.4 – 0.45               | 0.0051         | 0.0064         | 0.021        | 0.0049     | 0.023         | 0.4 - 0.45                 | 0.0013         | 0.0039         | 0.011        | 0.0048     | 0.013   |

| 3 or r | nore | Photon | multip | licitv |
|--------|------|--------|--------|--------|
|--------|------|--------|--------|--------|

| Blue beam X <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Background | Summary | Yellow beam X <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Background | Summary |
|--------------------------|----------------|----------------|--------------|------------|---------|----------------------------|----------------|----------------|--------------|------------|---------|
| 0.1 - 0.2                | 0.0038         | 0.0057         | 0            | 0.0061     | 0.0092  | 0.1 - 0.2                  | 0              | 0.0080         | 0.00095      | 0.0061     | 0.010   |
| 0.2 - 0.25               | 0.0015         | 0.0065         | 0            | 0.0051     | 0.0084  | 0.2 - 0.25                 | 0.0050         | 0.0075         | 0            | 0.0050     | 0.010   |
| 0.25 - 0.3               | 0.0020         | 0.0027         | 0            | 0.0045     | 0.0056  | 0.25 - 0.3                 | 0.0029         | 0.0022         | 0.0038       | 0.0045     | 0.0069  |
| 0.3 – 0.35               | 0              | 0.0032         | 0            | 0.0043     | 0.0053  | 0.3 – 0.35                 | 0.0033         | 0.0072         | 0.0044       | 0.0042     | 0.010   |
| 0.35 – 0.4               | 0.0017         | 0.0047         | 0.0096       | 0.0050     | 0.012   | 0.35 – 0.4                 | 0.0033         | 0.0042         | 0            | 0.0049     | 0.9073  |
| 0.4 - 0.45               | 0.0025         | 0              | 0            | 0.0063     | 0.0068  | 0.4 - 0.45                 | 0              | 0              | 0.018        | 0.0062     | 0.019   |

### Systematic uncertainty results for RG process

| Blue beam x <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Summary |
|--------------------------|----------------|----------------|--------------|---------|
| 0.1 - 0.2                | 0.00066        | 0.00095        | 0            | 0.0012  |
| 0.2 - 0.25               | 0.00043        | 0.0012         | 0.00027      | 0.0013  |
| 0.25 - 0.3               | 0.00066        | 0.00098        | 0            | 0.0012  |
| 0.3 – 0.35               | 0.00050        | 0              | 0            | 0.00050 |
| 0.35 – 0.4               | 0.0011         | 0.00067        | 0.0029       | 0.0031  |
| 0.4 – 0.45               | 0.0010         | 0.0010         | 0            | 0.015   |

| All Photon n | nultiplicity<br>Yellow beam X <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Summary |
|--------------|--------------------------------------------|----------------|----------------|--------------|---------|
|              | 0.1 - 0.2                                  | 0.00076        | 0              | 0            | 0.00076 |
|              | 0.2 - 0.25                                 | 0              | 0.00096        | 0            | 0.00096 |
|              | 0.25 - 0.3                                 | 0.00060        | 0.0013         | 0.00060      | 0.0016  |
|              | 0.3 – 0.35                                 | 0.00064        | 0.00036        | 0            | 0.00074 |
|              | 0.35 – 0.4                                 | 0.00078        | 0.00089        | 0.0018       | 0.0022  |
|              | 0.4 – 0.45                                 | 0.00096        | 0.00098        | 0            | 0.0014  |

|                          |                |                |              | 1       |
|--------------------------|----------------|----------------|--------------|---------|
| Blue beam X <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Summary |
| 0.1 - 0.2                | 0.0011         | 0.00088        | 0            | 0.0014  |
| 0.2 - 0.25               | 0              | 0.0015         | 0.00056      | 0.0016  |
| 0.25 - 0.3               | 0.00066        | 0.0011         | 0            | 0.0013  |
| 0.3 – 0.35               | 0.00065        | 0              | 0            | 0.00065 |
| 0.35 – 0.4               | 0.0018         | 0.0015         | 0            | 0.0022  |
| 0.4 – 0.45               | 0              | 0.0014         | 0            | 0.0014  |
|                          |                |                |              |         |

| 1 or 2 Photon | multiplicity               |                |                |              |         |
|---------------|----------------------------|----------------|----------------|--------------|---------|
|               | Yellow beam X <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Summary |
|               | 0.1 - 0.2                  | 0              | 0              | 0            | 0       |
|               | 0.2 - 0.25                 | 0              | 0.0012         | 0            | 0.0012  |
|               | 0.25 - 0.3                 | 0.0011         | 0.00093        | 0.0010       | 0.0017  |
|               | 0.3 – 0.35                 | 0.00060        | 0.00080        | 0            | 0.0010  |
|               | 0.35 – 0.4                 | 0              | 0.0013         | 0            | 0.0013  |
|               | 0.4 – 0.45                 | 0.00093        | 0              | 0.0043       | 0.0044  |

|                          |                |                |              | -       |
|--------------------------|----------------|----------------|--------------|---------|
| Blue beam x <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Summary |
| 0.1 - 0.2                | 0.0021         | 0.0022         | 0            | 0.0030  |
| 0.2 - 0.25               | 0.0010         | 0              | 0            | 0.0010  |
| 0.25 - 0.3               | 0.00085        | 0.0013         | 0            | 0.0015  |
| 0.3 – 0.35               | 0              | 0              | 0.0014       | 0.0014  |
| 0.35 – 0.4               | 0              | 0              | 0.0046       | 0.0046  |
| 0.4 – 0.45               | 0.0024         | 0.0021         | 0.0035       | 0.0048  |

| Yellow beam X <sub>F</sub> | Small BBC east | Large BBC east | Ring of Fire | Summary |
|----------------------------|----------------|----------------|--------------|---------|
| 0.1 - 0.2                  | 0              | 0              | 0.00041      | 0.00041 |
| 0.2 - 0.25                 | 0              | 0.0024         | 0            | 0.0024  |
| 0.25 - 0.3                 | 0.0013         | 0.0024         | 0            | 0.0027  |
| 0.3 – 0.35                 | 0.0012         | 0              | 0            | 0.0012  |
| 0.35 – 0.4                 | 0.0012         | 0.00083        | 0.0024       | 0.0028  |
| 0.4 – 0.45                 | 0.0013         | 0.0020         | 0.0038       | 0.0045  |

11

### Preliminary plot 1: A<sub>N</sub> for RG events

Preliminary figure 1:  $A_N$  for rapidity gap events as a function of  $x_F$  for 3 different photon multiplicity cases: all photon multiplicity (top), 1 or 2 photon multiplicity (middle), and 3 or more photon multiplicity (bottom). The  $A_N$  for  $x_F < 0$  (red points) shifts -0.013 along the x-axis.



### Preliminary plot 2: $A_N$ for single diffractive events $A_{II}$ photon multiplicity

Blue beam  $A_N$  is 2.1  $\sigma$  to be non-zero for EM-jet with all photon multiplicity.

Constant fit: 0.015 ± 0.0070

 $\chi^2/n.d.f: 1.61$ 

Blue beam  $A_N$  is 2.2  $\sigma$  to be non-zero for EM-jet with 1 or 2 photon multiplicity.

Constant fit: 0.021 ± 0.0092

 $\chi^2/n.d.f: 1.73$ 

Blue beam  $A_N$  is 0.61  $\sigma$  to be non-zero for EM-jet with 3 or more photon multiplicity.

Constant fit: 0.0068 ± 0.011

```
\chi^2/n.d.f:0.38
```

Yellow beam  $A_N$  is consistent with zero for all cases.

Preliminary figure 2:  $A_N$  for single diffractive events as a function of  $x_F$  for 3 different photon multiplicity cases: all photon multiplicity (top), 1 or 2 photon multiplicity (middle), and 3 or more photon multiplicity (bottom). The  $A_N$  for  $x_F < 0$  (red points) shifts -0.013 along the x-axis.



## Preliminary plot 3 (updated): Comparison plot of $A_N$ for inclusive, single diffractive, and rapidity gap events



Preliminary figure 3:  $A_N$  as a function of  $x_F$  for 3 processes for the case of photon multiplicity 1 or 2 (top panel) and photon multiplicity 3 or more (bottom panel) : inclusive process (red), single diffractive process (blue), and the rapidity gap events (magenta)

# Back up Preliminary plot 4: $A_N$ for single diffractive events



Back up Preliminary figure 4:  $A_N$  for single diffractive events as a function of  $x_F$  for all photon multiplicity. The blue points are for  $x_F > 0$ , while the red points are for  $x_F < 0$ . The  $A_N$  for  $x_F < 0$  shifts -0.008 along the x-axis.

# Back up Preliminary plot 5: $A_N$ for single diffractive events



Back up preliminary figure 5:  $A_N$  for single diffractive events as a function of  $x_F$  for 2 different photon multiplicity cases: 1 or 2 photon multiplicity (red), and 3 or more photon multiplicity (blue)

### Conclusion

- The EM-jet  $A_N$  for single diffractive process is observed with more than 2 sigma non-zero significant.
- The EM-jet  $A_N$  for single diffractive process does not provide strong evidence that the diffractive process can contribute to large  $A_N$  for inclusive process

Preliminary plot 3 (old): Comparison plot of  $A_N$  for inclusive, single diffractive, and rapidity gap events



Preliminary figure 3:  $A_N$  as a function of  $x_F$  for 3 processes for the case of photon multiplicity 1 or 2: inclusive process (red), single diffractive process (blue), and the rapidity gap events (green)