Diffractive EM Jet A_N at FMS with run 17 data preliminary request

Xilin Liang

UC Riverside

Sept. 06, 2023

Contact information

- PA: Xilin Liang¹, Kenneth Barish¹
- PA email address: xilin.liang@email.ucr.edu
- Supervisor: Kenneth Barish¹
- Supervisor email address: kenneth.barish@ucr.edu

Physics motivation

- Diffractive process may play a role to explain large A_N .
 - A_N decreases with Increasing number of photons in EM jets.
 - Isolated π^0 events have larger A_N .

Data set

- Data set: run 17 pp transverse $\sqrt{s} = 510$ GeV ,fms stream
 - (pp500_production_2017)
- Production type: MuDst ; Production tag: P22ib
- STAR library: SL20a
- Triggers for FMS : FMS small board sum, FMS large board sum and FMS-JP
 - Trigger list: FMS-JP0, FMS-JP1, FMS-JP2, FMS-sm-bs1, FMS-sm-bs2, FMS-sm-bs3, FMS-lg- bs1, FMS-lgbs2, FMS-lg-bs3
 - Trigger veto: FMS-LED
- Requirement: Event must contain Roman Pot (RP) information (pp2pp).
 - Already filter out events without RP response. Totally 180 fills.
 Total number of events from data set sample (with FMS and RP coincidence)
 Total number of events with FMS points
 Total number of events with FMS EM-jets
 860 M

Case 2:

Single diffractive event: we can detect only 1 proton track on west side RP.

Require: sum of west side tracks energy (proton

+ EM Jet) less than beam energy

Case 3:

Double diffractive event: we can detect 1 proton track on east side RP and 1 proton track on west side RP.

Require: sum of west side tracks energy (proton + EM Jet) less than beam energy

Procedure for data analysis

Event selection and corrections

• FMS

- 9 Triggers, veto on FMS-LED
- bit shift, bad / dead / hot channel masking
- Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 2 GeV, p_T > 2 GeV/c, FMS point as input.
- Only 1 EM-jet per event
- Only allow acceptable beam polarization (up/down).
- Vertex (Determine vertex z priority according to TPC , VPD, BBC.)
 - Vertex $|z| < 80 \ cm$

Roman Pot and Diffractive process:

- Acceptable cases: (in next slide)
 - 1. Only 1 west RP track + no east RP track
 - 2. Only 1 east RP track + only 1 west RP track
 - RP track must be good track:
 - a) Each track hits 7 or 8 planes
 - $-0.25 < P_X < 0.3 \text{ GeV/c}$;
 - $-0.6 < P_Y < -0.4$ GeV/c or $0.3 < P_Y < 0.55$ GeV/c
 - Sum of west RP track energy and all EM Jet energy

• BBC ADC sum cuts:

• small BBC west ADC < 250 (no small BBC east cut)

Data set: run 17 pp transverse $\sqrt{s} = 510$ GeV ,fms stream (pp500_production_2017)

Corrections for EM-jet:

Energy correction and Underlying Event correction

x _F	E sum cut
0.1 - 0.15	E _{sum} < 260 GeV
0.15 - 0.2	E _{sum} < 270 GeV
0.2 - 0.25	E _{sum} < 280 GeV
0.25 - 0.3	220 < E _{sum} < 290 GeV
0.3 - 0.35	230 < E _{sum} < 310 GeV
0.35 - 0.4	240 < E _{sum} < 320 GeV
0.4 – 0.45	260 < E _{sum} < 340 GeV

Transverse single spin asymmetry (A_N) calculation

• We use **cross ratio** method to calculate the diffractive EM Jet A_N at FMS.

• Raw
$$A_N: \varepsilon = \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}} \approx pol * A_N * \cos(\phi)$$

- Plot A_N as a function of X_F . ($x_F = \frac{E_{EM jet}}{E_{Beam}}$), $x_F \in [0.1, 0.45]$
- Divide full ϕ range [- π , + π] into 16 bins.

Background study for E sum

- We use zerobias stream events to study the background shape for E sum spectrum for different EM-jet x_F ranges.
 - E sum (background) = E(EM-jet from inclusive process) + E(west RP from zerobias)
- Calculation: $Esum(i + j) = \sum_{i,j} P(i) * n(j)$, i are all possible energies (in 1 GeV bin) for specific x_F range ; j are all possible energies (in 1 GeV bin) for west RP track energy (momentum) in zerobias data.
 - P(i) is the fraction for EM-jet yields in [i,i+1] (GeV) within the specific x_F range .
 - n(j) is the yields in west RP energy (momentum) in [j,j+1] (GeV).

- E sum spectrum based on different x_F ranges
- <u>All photon multiplicity</u>
- Black curve (Background) is mixed events from zerobias events (scaled to data).
- Red curve is the FMS stream data

Particle level proton x_L

• Particle level proton x_L with proton within west RP coverage and photon within FMS coverage.

$$x_L = \frac{E_{proton}}{E_{beam}}$$

- In simulation, we can see high x_L is preferred with west RP coverage.
 - (Low x_L can not be detected by RP)

Simulation: 2M hard diffraction simulation events with pp510.

Systematic uncertainty

- $A_N(sig) = \frac{A_N(measured) frac(bkg) * A_N(bkg)}{frac(sig)}$
- Systematic uncertainty for A_N (measured)
 - Small BBC west cut, E sum cut
- Systematic uncertainty for $A_N(bkg)$
 - Small BBC west cut
- Systematic uncertainty for *frac(sig)*
- Polarization uncertainty
 - 1.1%

Systematic uncertainty calculation:

$$\sqrt{sys_{A_N(measured)}^2 + sys_{A_N(bkg)}^2 + sys_{frac(bkg)}^2}$$

Use 2 methods to estimate the systematic uncertainty for cuts:

- 1. Estimate the systematic uncertainty by the average A_N difference (from constant fit) from varying the cuts.
- For a certainty cut (R1), choose an entirely different cut region (R2) to study . Calculate their A_N difference and statistical uncertainty.

$$= \max\{(|A_N(R1) - A_N(R2)| - \sqrt{\sigma_{R1}^2 + \sigma_{R2}^2}), 0\}$$

Systematic uncertainty results

• E sum (A_N (measured))

• Small BBC west sum ($A_N(measured)$)

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1 - 0.15	0.00094	0	0.00015	0.010
0.15 – 0.2		0		0
0.2 – 0.25		0		0.011

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1-0.15	0.00067	0.00067	0.00042	0
0.15 - 0.2		0		0
0.2 – 0.25		0		0.0097

• Small BBC west sum $(A_N \text{ (bkg)})$

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1 - 0.15	0.00037	0	0.0025	0
0.15 – 0.2		0		0.012
0.2 – 0.25		0		0

Use the higher value one between 2 methods to assign as systematic uncertainty

Systematic uncertainty for *frac(sig)*

- For the systematic uncertainty, use west RP track from samples of RP stream to do the mix event for background study for systematic uncertainty.
- Apply the difference of the signal fraction to assign for systematic.

хF	West RP track from zerobias stream (analysis) $frac_{ana}(sig)$	West RP track from RP stream (systematic) $frac_{sys}(sig)$	sys
0.1 - 0.15	0.78±0.036	0.89±0.003	0.050
0.15 - 0.2	0.70±0.053	0.87±0.004	0.074
0.2 – 0.25	0.63±0.065	0.85±0.004	0.10

$$sys = \left| frac_{ana}(sig) - frac_{sys}(sig) \right| - \sqrt{(\sigma_{ana}^2 + \sigma_{sys}^2)}$$

Signal A_N results for all photon multiplicity

- A_N results with 3 x_F bins only
 - **3** x_F bins. ([0.1, 0.15], [0.15, 0.2], [0.2, 0.25])
- **Preliminary plot** request for diffractive EM-jet A_N for all photon multiplicity EM-jets

$$A_{N}(sig) = \frac{A_{N}(measured) - frac(bkg) * A_{N}(bkg)}{frac(sig)}$$

Constant fit to check n-sigma to be non-zero:

- Blue beam: 0.022 +/- 0.011. (2.05 σ)
- Yellow beam: 0.0010 +/- 0.013. (0.79 *σ*)

E sum spectrum based on different x_F ranges

- <u>1 or 2 photon multiplicity</u>
- Black curve (Background) is mixed events from zerobias events (scaled to data).
- Red curve is the FMS stream data

Systematic uncertainty results

• E sum (A_N (measured))

• Small BBC west sum ($A_N(measured)$)

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1 - 0.15	0.00078	0	0.0026	0
0.15 – 0.2		0		0
0.2 – 0.25		0		0

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1 - 0.15	0.0010	0	0.00028	0
0.15 – 0.2		0		0
0.2 – 0.25		0.0098		0

• Small BBC west sum $(A_N \text{ (bkg)})$

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1-0.15	0.0045	0	0.0029	0
0.15 – 0.2		0		0
0.2 – 0.25		0.018		0

Use the higher value one between 2 methods to assign as systematic uncertainty

Systematic uncertainty for *frac(sig)*

- For the systematic uncertainty, use west RP track from samples of RP stream to do the mix event for background study for systematic uncertainty.
- Apply the difference of the signal fraction to assign for systematic.

xF	West RP track from zerobias stream (analysis) $frac_{ana}(sig)$	West RP track from RP stream (systematic) $frac_{sys}(sig)$	sys
0.1 - 0.15	0.81±0.031	0.89±0.0027	0.046
0.15 – 0.2	0.76±0.044	0.87±0.0036	0.066
0.2 – 0.25	0.71±0.049	0.85±0.0040	0.090

$$sys = |frac_{ana}(sig) - frac_{sys}(sig)| - \sqrt{(\sigma_{ana}^2 + \sigma_{sys}^2)}$$

Signal A_N results for photon multiplicity <= 2

- A_N results with 3 x_F bins only
 - **3** x_F bins. ([0.1, 0.15], [0.15, 0.2], [0.2, 0.25])
- **Preliminary plot** request for diffractive EM-jet A_N for 1 or 2 photon multiplicity EM-jets

$$A_{N}(sig) = \frac{A_{N}(measured) - frac(bkg) * A_{N}(bkg)}{frac(sig)}$$

Constant fit to check n-sigma to be non-zero:

- Blue beam: 0.018 +/- 0.013. (1.38 σ)
- Yellow beam: -0.0044 +/- 0.012 (0.36 σ)

Comparison between run 17 inclusive and diffractive EM-jet $A_{\rm N}$

- Compare the A_N results between inclusive and diffractive process.
 - 1 or 2 photon multiplicity EM-jets are considered.
- Both inclusive and diffractive EM-jet A_N are with the same sign ($A_N > 0$)
- Diffractive process could have some contribution on large A_N for inclusive process at high x_F regions. However, their values are still covered with uncertainties.

Preliminary request plot

Conclusion

- Run 17 diffractive EM-jet A_N using FMS is at preliminary stage for requesting for preliminary.
- The $A_{\rm N}\,$ for run 17 are showing the mostly positive values but close to zero.
- We do not observe the negative sign for A_N, so it's different from run 15 diffractive EM-jet A_N results.

Back up

E sum (FMS data – background)

All photon multiplicity

 To be more direct to see the ranges where the FMS data (red curve) over the background (black curve) for each E sum bin, we calculate the yield of FMS data subtracting background.

Measured A_N and background A_N

EM-jet with all photon multiplicity

 $A_{N}(sig) = \frac{A_{N}(measured) - frac(bkg) * A_{N}(bkg)}{frac(sig)}$

Note: All red point shift -0.005 in x axis.

E sum (FMS data – background)

1 or 2 photon multiplicity

 To be more direct to see the ranges where the FMS data (red curve) over the background (black curve) for each E sum bin, we calculate the yield of FMS data subtracting background.

Measured A_N and background A_N

EM-jet with photon multiplicity 1 or 2

 $A_{N}(sig) = \frac{A_{N}(measured) - frac(bkg) * A_{N}(bkg)}{frac(sig)}$

