Run 17 diffractive EM-jet A_N update and preliminary request

Xilin Liang

Aug. 30, 2023

Outline

- Update on statistical uncertainty propagation and results
- Update on systematic uncertainty study
- Update on Run 17 diffractive EM-jet A_N and preliminary request

Questions and suggestions from last week

- 1. Error propagation for signal fraction.
 - Derive the error propagation for signal fraction and calculate the statistical uncertainty for signal fraction (background fraction)
 - Derive the error propagation for A_N (sig)
 - Recalculate the systematic uncertainty for signal fraction.
- 2. Systematic uncertainty for small BBC east
 - Try to get rid of the small BBC east cut (suggested by Carl)
 - Drop the systematic term for small BBC east.

Event selection and corrections

• FMS

- 9 Triggers, veto on FMS-LED
- bit shift, bad / dead / hot channel masking
- Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 2 GeV, p_T > 2 GeV/c, FMS point as input.
- Only 1 EM-jet per event
- Only allow acceptable beam polarization (up/down).
- Vertex (Determine vertex z priority according to TPC , VPD, BBC.)
 - Vertex $|z| < 80 \ cm$

Roman Pot and Diffractive process:

- Acceptable cases: (in next slide)
 - 1. Only 1 west RP track + no east RP track
 - 2. Only 1 east RP track + only 1 west RP track
 - RP track must be good track:
 - a) Each track hits 7 or 8 planes
 - $-0.25 < P_X < 0.3$ GeV/c;
 - $-0.6 < P_Y < -0.4$ GeV/c or $0.3 < P_Y < 0.55$ GeV/c
 - Sum of west RP track energy and all EM Jet energy

• BBC ADC sum cuts:

small BBC west ADC < 250 (no small BBC east cut)

Data set: run 17 pp transverse $\sqrt{s} = 510$ GeV ,fms stream (pp500_production_2017)

Corrections for EM-jet:

Energy correction and Underlying Event correction

× _F	E sum cut (this presentation)
0.1 - 0.15	E _{sum} < 260 GeV
0.15 - 0.2	E _{sum} < 270 GeV
0.2 - 0.25	E _{sum} < 280 GeV
0.25 - 0.3	220 < E _{sum} < 290 GeV
0.3 - 0.35	230 < E _{sum} < 310 GeV
0.35 - 0.4	240 < E _{sum} < 320 GeV
0.4 – 0.45	260 < E _{sum} < 340 GeV

Background study for E sum

- We use zerobias stream events to study the background shape for E sum spectrum for different EM-jet x_F ranges.
 - E sum (background) = E(EM-jet from inclusive process) + E(west RP from zerobias)
- Calculation: $Esum(i + j) = \sum_{i,j} P(i) * n(j)$, i are all possible energies (in 1 GeV bin) for specific x_F range ; j are all possible energies (in 1 GeV bin) for west RP track energy (momentum) in zerobias data.
 - P(i) is the fraction for EM-jet yields in [i,i+1] (GeV) within the specific x_F range .
 - n(j) is the yields in west RP energy (momentum) in [j,j+1] (GeV).

- E sum spectrum based on different x_F ranges
- Data: FMS stream data with <u>**no**</u> <u>east BBC cut</u>, but west BBC cut **<250**.
- <u>All photon multiplicity</u>
- Black curve (Background) is mixed events from zerobias events (scaled to data).
- Red curve is the FMS stream data

E sum (FMS data – background)

All photon multiplicity

 To be more direct to see the ranges where the FMS data (red curve) over the background (black curve) for each E sum bin, we calculate the yield of FMS data subtracting background.

- E sum spectrum based on different x_F ranges
- Data: FMS stream data with <u>**no**</u> <u>east BBC cut</u>, but west BBC cut **<250**.
- <u>1 or 2 photon multiplicity</u>
- Black curve (Background) is mixed events from zerobias events (scaled to data).
- Red curve is the FMS stream data

E sum (FMS data – background)

1 or 2 photon multiplicity

 To be more direct to see the ranges where the FMS data (red curve) over the background (black curve) for each E sum bin, we calculate the yield of FMS data subtracting background.

New E sum cut based on the zerobias bkg study

- We choose small BBC West < 250 , which have much higher fraction of signal.
- Apply the new E sum cut based on the regions of **FMS data curve** over the **zerobias curve**

x _F	Old E sum Cut
0.1 - 0.15	E _{sum} < 265 GeV
0.15 - 0.2	E _{sum} < 280 GeV
0.2 - 0.25	E _{sum} < 295 GeV
0.25 - 0.3	E _{sum} < 305 GeV
0.3 - 0.35	E _{sum} < 315 GeV
0.35 - 0.4	E _{sum} < 330 GeV
0.4 - 0.45	E _{sum} < 340 GeV

x _F	New E sum Cut
0.1 - 0.15	E _{sum} < 260 GeV
0.15 - 0.2	E _{sum} < 270 GeV
0.2 - 0.25	E _{sum} < 280 GeV
0.25 - 0.3	220 < E _{sum} < 290 GeV
0.3 - 0.35	230 < E _{sum} < 310 GeV
0.35 - 0.4	240 < E _{sum} < 320 GeV
0.4 - 0.45	260 < E _{sum} < 340 GeV

Fraction of signal and background

- All photon multiplicity
- Calculate the fraction of signal and background from the integrating the yield of each the FMS data and zerobias background:
 - N tot = Integral of yield for the **FMS data curve** within new E sum range.
 - N bkg = Integral of yield for the **zerobias data scaled curve** within new E sum range.
 - N sig = N tot N bkg
 - Frac sig (bkg) = N sig (N bkg) / N tot

xF bin	N tot	N sig	N bkg	Frac sig	Frac bkg
<mark>0.1 – 0.15</mark>	<mark>45637</mark>	<mark>35747</mark>	<mark>9890</mark>	<mark>0.78±0.036</mark>	<mark>0.22±0.036</mark>
<mark>0.15 – 0.2</mark>	<mark>35161</mark>	<mark>24675</mark>	<mark>10486</mark>	<mark>0.70±0.053</mark>	<mark>0.30±0.053</mark>
<mark>0.2 – 0.25</mark>	<mark>22374</mark>	<mark>13986</mark>	<mark>8388</mark>	<mark>0.63±0.064</mark>	<mark>0.37±0.064</mark>
0.25 – 0.3	10655	6006	4649	0.56±0.070	0.44±0.070
0.3 – 0.35	7117	3777	3340	0.53±0.076	0.47±0.076
0.35 – 0.4	4673	2281	2391	0.49±0.090	0.51±0.090
0.4 - 0.45	2595	1302	1293	0.50±0.083	0.50±0.083
<mark>0.25 – 0.45</mark>	<mark>25040</mark>	<mark>13366</mark>	<mark>16673</mark>	<mark>0.53±0.077</mark>	<mark>0.47±0.077</mark>

11

Error propagation for background fraction

- We start from E sum background shape study: $N_{Esum}(i + j) = \sum_{i,j} n_{jet}(i) * n_{RP}(j)$
 - $n_{jet}(i)$ is the yield for EM-jet for each energy ; $n_{RP}(j)$ is the yield for west RP (zerobias stream) for each energy

•
$$\sigma_{N_{Esum}} = \sqrt{\sum_{i,j} \left[\left(\frac{\partial y}{\partial n_{jet}(i)} \right)^2 \left(\sigma_{n_{RP}(j)} \right)^2 + \left(\frac{\partial y}{\partial n_{RP}(j)} \right)^2 \left(\sigma_{n_{n_{jet}}(i)} \right)^2 \right]}$$

•
$$= \sqrt{\sum_{i,j} \left[\left(n_{jet}(i) \right)^2 n_{RP}(j) + \left(n_{RP}(j) \right)^2 n_{jet}(i) \right]}$$

- Therefore, the count for the background for each energy bin can be expressed by: $n_{Esum}(k) \pm \sigma_{N_{Esum}(k)}$
- $N_{bkg} = scale * \sum_k n_{Esum}(k)$, $\sigma_{N_{bkg}} = scale * \sum_k \sigma_{N_{Esum}}(k)$, where k is each energy with E sum cut.
 - Scale: the scale factor for background shape to FMS data curve.
- Therefore, we get the background fraction: $\frac{N_{bkg} \pm \sigma_{N_{bkg}}}{N_{tot}}$

Note: All red point shift -0.005 in x axis.

Error propagation for signal A_N

$$\begin{split} & \cdot A_N(sig) = \frac{A_N(mea) - frac(bkg) * A_N(bkg)}{frac(sig)} = \frac{A_N(mea) - frac(bkg) * A_N(bkg)}{1 - frac(bkg)} \\ & \cdot \sigma^2 = \left(\frac{\partial A_N(sig)}{\partial A_N(mea)}\right)^2 \sigma A_N^2(mea) + \left(\frac{\partial A_N(sig)}{\partial frac(bkg)}\right)^2 \sigma frac^2(bkg) + \left(\frac{\partial A_N(sig)}{\partial A_N(bkg)}\right)^2 \sigma A_N^2(bkg) \\ & \cdot = \left(\frac{1}{1 - frac(bkg)}\right)^2 \sigma A_N^2(mea) + \left(\frac{A_N(sig)}{1 - frac(bkg)}\right)^2 \sigma frac^2(bkg) + \left(\frac{frac(bkg)}{frac(sig)}\right)^2 \sigma A_N^2(bkg) \\ & \cdot = \left(\frac{1}{frac(sig)}\right)^2 \sigma A_N^2(mea) + \left(\frac{A_N(sig)}{frac(sig)}\right)^2 \sigma frac^2(bkg) + \left(\frac{frac(bkg)}{frac(sig)}\right)^2 \sigma A_N^2(bkg) \end{split}$$

)

Systematic uncertainty

- $A_N(sig) = \frac{A_N(measured) frac(bkg) * A_N(bkg)}{frac(sig)}$
- Systematic uncertainty for A_N (measured)
 - Small BBC west cut, E sum cut
- Systematic uncertainty for $A_N(bkg)$
 - Small BBC west cut
- Systematic uncertainty for *frac(sig)*
- Polarization uncertainty
 - 1.1%

Systematic uncertainty calculation:

$$\sqrt{sys_{A_N(measured)}^2 + sys_{A_N(bkg)}^2 + sys_{frac(bkg)}^2}$$

Use 2 methods to estimate the systematic uncertainty for cuts:

- 1. Estimate the systematic uncertainty by the average A_N difference (from constant fit) from varying the cuts.
- For a certainty cut (R1), choose an entirely different cut region (R2) to study . Calculate their A_N difference and statistical uncertainty.

$$= \max\{(|A_N(R1) - A_N(R2)| - \sqrt{\sigma_{R1}^2 + \sigma_{R2}^2}), 0\}$$

Systematic uncertainty results

• E sum (A_N (measured))

• Small BBC west sum ($A_N(measured)$)

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1-0.15	0.00094	0	0.00015	0.010
0.15 – 0.2		0		0
0.2 – 0.25		0		0.011
0.25 – 0.45		0		0.0010

 Small BBC west sum (

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1 - 0.15	0.00037	0	0.0025	0
0.15 - 0.2		0		0.012
0.2 – 0.25		0		0
0.25 - 0.45		0		0.00010

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1-0.15	0.00067	0.00067	0.00042	0
0.15 - 0.2		0		0
0.2 - 0.25		0		0.0097
0.25 - 0.45		0		0

Use the higher value one between 2 methods to assign as systematic uncertainty

Systematic uncertainty for *frac(sig)*

- For the systematic uncertainty, use west RP track from samples of RP stream to do the mix event for background study for systematic uncertainty.
- Apply the difference of the signal fraction to assign for systematic.

xF	West RP track from zerobias stream (analysis) $frac_{ana}(sig)$	West RP track from RP stream (systematic) $frac_{sys}(sig)$	sys
0.1 - 0.15	0.78±0.036	0.89±0.003	0.050
0.15 - 0.2	0.70±0.053	0.87±0.004	0.074
0.2 – 0.25	0.63±0.065	0.85±0.004	0.10
0.25 - 0.45	0.53±0.077	0.80±0.005	0.12

$$sys = |frac_{ana}(sig) - frac_{sys}(sig)| - \sqrt{(\sigma_{ana}^2 + \sigma_{sys}^2)}$$

Signal A_N results for all photon multiplicity

- A_N results for new E sum cut
- 4 x_F bins. ([0.1, 0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.45])
- Preliminary plot request for diffractive EM-jet $A_{\rm N}$ for all photon multiplicity EM-jets

$$A_{N}(sig) = \frac{A_{N}(measured) - frac(bkg) * A_{N}(bkg)}{frac(sig)}$$

Constant fit to check n-sigma to be non-zero:

- Blue beam: 0.021 +/- 0.010. (2.05 σ)
- Yellow beam: 0.0053 +/- 0.012. (0.45 σ)

Fraction of signal and background

- Photon multiplicity : 1 or 2
- Calculate the fraction of signal and background from the integrating the yield of each the FMS data and zerobias background:
 - N tot = Integral of yield for the **FMS data curve** within new E sum range.
 - N bkg = Integral of yield for the **zerobias data scaled curve** within new E sum range.
 - N sig = N tot N bkg
 - Frac sig (bkg) = N sig (N bkg) / N tot

xF bin	N tot	N sig	N bkg	Frac sig	Frac bkg
<mark>0.1 – 0.15</mark>	<mark>33115</mark>	<mark>26975</mark>	<mark>6140</mark>	<mark>0.81±0.031</mark>	<mark>0.19±0.031</mark>
<mark>0.15 – 0.2</mark>	<mark>23640</mark>	<mark>17940</mark>	<mark>5700</mark>	<mark>0.76±0.044</mark>	<mark>0.24±0.044</mark>
<mark>0.2 – 0.25</mark>	<mark>15046</mark>	<mark>10747</mark>	<mark>4299</mark>	<mark>0.71±0.049</mark>	<mark>0.29±0.049</mark>
0.25 – 0.3	7365	4952	2413	0.67±0.052	0.33±0.052
0.3 – 0.35	4962	3060	1902	0.62±0.062	0.38±0.062
0.35 – 0.4	3327	1942	1385	0.58±0.073	0.42±0.073
0.4 - 0.45	1819	1063	756	0.58±0.069	0.42±0.069
<mark>0.25 – 0.45</mark>	<mark>17473</mark>	<mark>11016</mark>	<mark>6457</mark>	<mark>0.63±0.061</mark>	<mark>0.37±0.061</mark>

19

Systematic uncertainty results

• E sum (A_N (measured))

• Small BBC west sum ($A_N(measured)$)

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1 - 0.15	0.00078	0	0.0026	0
0.15 – 0.2		0		0
0.2 – 0.25		0		0
0.25 – 0.45		0		0

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1 - 0.15	0.0010	0	0.00028	0
0.15 – 0.2		0		0
0.2 – 0.25		0.0098		0
0.25 – 0.45		0		0

• Small BBC west sum $(A_N \text{ (bkg)})$

xF (measured)	Method 1 Blue beam	Method 2 Blue beam	Method 1 Yellow beam	Method 2 Yellow beam
0.1 - 0.15	0.0045	0	0.0029	0
0.15 – 0.2		0		0
0.2 – 0.25		0.018		0
0.25 - 0.45		0		0

Use the higher value one between 2 methods to assign as systematic uncertainty

Systematic uncertainty for *frac(sig)*

- For the systematic uncertainty, use west RP track from samples of RP stream to do the mix event for background study for systematic uncertainty.
- Apply the difference of the signal fraction to assign for systematic.

xF	West RP track from zerobias stream (analysis) $frac_{ana}(sig)$	West RP track from RP stream (systematic) $frac_{sys}(sig)$	sys
0.1 - 0.15	0.81±0.031	0.89±0.0027	0.046
0.15 - 0.2	0.76±0.044	0.87±0.0036	0.066
0.2 – 0.25	0.71±0.049	0.85±0.0040	0.090
0.25 – 0.45	0.63±0.061	0.80±0.0050	0.11

$$sys = \left| frac_{ana}(sig) - frac_{sys}(sig) \right| - \sqrt{(\sigma_{ana}^2 + \sigma_{sys}^2)}$$

Signal A_N results for photon multiplicity <= 2

- A_N results for new E sum cut
- 4 x_F bins. ([0.1, 0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.45])
- Preliminary plot request for diffractive EM-jet A_N for 1 or 2 photon multiplicity EM-jets

$$A_{N}(sig) = \frac{A_{N}(measured) - frac(bkg) * A_{N}(bkg)}{frac(sig)}$$

Constant fit to check n-sigma to be non-zero:

- Blue beam: 0.019 +/- 0.011. (1.6 σ)
- Yellow beam: 0.0025 +/- 0.011 (0.22 σ)

Conclusion and outlook

- Small BBC east sum cuts are not needed, and the E sum plots with background estimation study looks good.
- The diffractive EM-jet A_N for all photon multiplicity, and, 1 or 2 photon multiplicity EM-jets are calculated.
- The systematic uncertainty looks more reasonable now.
- Request for preliminary for the A_N result plots.
 - Preliminary request slide in the same title of my talk in PWG meeting
- Next to do: compare with inclusive EM-jet A_N results and generate the plots for SPIN 23 conference.
 - 1 or 2 photon multiplicity EM-jet A_N for inclusive/diffractive processes.

Back up

Roman Pot track QA for FMS and zerobias data

- The Roman Pot track are passing the cut below:
 - Each track hits 7 or 8 planes
 - $-0.25 < P_X < 0.3 \text{ GeV/c}$;
 - $-0.6 < P_Y < -0.4$ GeV/c or $0.3 < P_Y < 0.55$ GeV/c
- <u>Apply the same cuts for small BBC west ADC < 250</u>
- Ratio of yield of zerobias west RP to FMS stream west RP. (Rebin(5))

E sum spectrum based on different x_F ranges

- Data: FMS stream data with east BBC cut and west BBC cut (<250). (last week)
- Black curve (Background) is mixed events from zerobias events (scaled to data).

