Global Spin Alignment of φ and K^{*0} Mesons in 19.6 GeV Au+Au Collisions from BES-II

Gavin Wilks

(gwilks3@uic.edu)

University of Illinois at Chicago

05/25/2022

Motivation for Analysis

- BES-II provides significantly more statistics for lower collision energies.
 OBES-I 19.6 GeV: ~19M events after cuts
 OBES-II 19.6 GeV: ~400M events after cuts
- Preliminary results for BES-I energies show increasing global spin alignment for φ-meson at lower AuAu collision energies ≤ 19.6 GeV.
 Clarify ρ₀₀ behavior in lower energy regime.
- Cross-check ρ_{00} values for K*⁰ from BES-I. No significant deviation from 1/3.

Introduction to Spin Alignment

Preferential alignment of a particle's spin along the orbital angular momentum produced in heavy-ion collisions.

 ρ_{00} : 00th element of the spin density matrix.

 θ^* : angle between K⁺ daughter and polarization axis in parent's rest frame.

 ρ_{00} is found by fitting the parent particle's yield (*N*) vs $cos(\theta^*)$.

$$\frac{dN}{d\cos\theta^*} = N_0 \times \left[(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^* \right]$$

 $\vec{p}_{K^{+}} \qquad \theta^{*} \qquad \vec{p}_{K^{+}} \qquad \theta^{*} \qquad \vec{p}_{K^{+}} \qquad \vec{p$

Phys. Rev. C 98, 044907

Nucl. Phys.B18,332(1970)

 $\rho_{00} \neq 1/3$ indicates spin alignment.

Data and analysis cuts

Au+Au 19.6 GeV, BES-II

Event Cuts

- Vertex: |Vz| < 70 cm |Vr| < 2 cm
- nBTOFMatch > 2
- Trigger IDs (minbias): 640001, 640011, 640021, 640031, 640041, 640051

Track Cuts

- 0.1 < |pT| < 10.0 GeV/c
- |DCA| < 3.0 cm
- TPC hits > 15
- TPC hit ratio > 0.52
- $|\eta| < 1.0$

TPC Event Plane (2nd order)

2nd Order EP Cuts - 0.15 GeV/c < |pT| < 2.0 GeV/c |DCA| < 1.0 cm $|\eta| < 1.0$ - Total η separation for subevent planes = 0.10

- Run-by-run, Centrality, and Vz binning for re-centering and shift calibrations.

 $-Vz bins = \{(-70, -30], (-30, 0], (0, 30], (30, 70)\}$

Default ϕ PID and Reconstruction settings

 $\frac{\text{PID}}{\text{K}^{+/-}}$ |DCA| < 2.0 $\text{TPC: } |n\sigma_{\text{K}}| < 2.0$ TOF: 0.16 < m2 < 0.36

<u>Fitting+BG subtraction</u> Mixed event background

Background normalized to tail of signal+background, m=[1.04,1.05] GeV

Breit-wigner + residual poly1 for fit Fit region m = [0.994, 1.05] GeV

Integration signal extraction in region $[m-2\Gamma,m-2\Gamma]$

ϕ meson Efficiency vs cos(θ^*)

5/25/22

Efficiency vs $cos(\theta^*)$

No direct answer to why we see a slight negative linear slope with respect to $\cos(\theta^*)$.

Linear trends of the two data sets appear consistent overall.

y-int = 1.9745 +/- 0.0225

y-int = 1.5781 +/- 0.0080

y-int = 1.4535 +/- 0.0044

y-int = 1.4545 +/- 0.0038

y-int = 1.4675 +/- 0.0036

y-int = 1.4370 +/- 0.0024

= 0.4-0.8 GeV/c

= 1.2-1.8 GeV/c

pT = 0.8 - 1.2 GeV/c

pT = 1.8-2.4 GeV/c

pT = 2.4 - 3.0 GeV/c

pT = 3.0 - 4.2 GeV/c

Resolution and Acceptance Correction

- Decay ϕ -meson in Pythia6 with the following kinematics.
 - Random p_T from measured spectra in specific p_T bin.
 - Random rapidity from uniform distribution over [-1,1]
 - Random $\boldsymbol{\phi}$ using measured elliptic flow as input.
- Calculate $\cos(\theta^*)$ for K⁺ daughter.
- Use ϕ -meson yield vs cos(θ^*) from simulation to calculate F (acceptance coefficient)

$$\left[\frac{d\mathrm{N}}{d\cos\theta^*d\beta}\right]_{|\eta|} = \frac{d\mathrm{N}}{d\cos\theta^*d\beta} \times g(\theta^*,\beta).$$

$$g(\theta^*,\beta) \propto 1 + F \cos^2 \theta^* + F \sin^2 \theta^* \cos 2\beta$$

$$g(\theta^*) \propto 1 + F \cos^2 \theta^*$$

Phys. Rev. C 98, 044907

Resolution and Acceptance Correction

• Since we do not know the reaction plane and can only calculate the event plane with a finite resolution, we must change coordinates to a primed frame for our calculation in which,

$$\Psi' = \Psi + \Delta.$$

• We can extract ρ_{00} from the the updated function where F is set by simulation.

$$\left[\frac{dN}{d\cos\theta'^*}\right]_{|\eta|} \propto (1 + \frac{B'F}{2}) + (A' + F)\cos^2\theta' + (A'F - \frac{B'F}{2})\cos^4\theta'^*,$$

$$A' = \frac{A(1+3R)}{4+A(1-R)} \qquad A = \frac{3\rho_{00}-1}{1-\rho_{00}}.$$
$$B' = \frac{A(1-R)}{4+A(1-R)}$$

Phys. Rev. C 98, 044907

EP Resolution and Acceptance Correction

• To ensure ρ_{00} with respect to the 2nd order EP is consistent with ρ_{00} with respect to the 1st order EP one must use the 2nd order EP "resolution" with respect to the reaction plane that the 1st order EP is perturbing around.

$$R_{21} = \langle \cos 2(\Psi_2 - \Psi_{r,1}) \rangle$$

• R_{21} can be found by using the following relation.

$$D_{12} \equiv \langle \cos 2(\Psi_1 - \Psi_2) \rangle$$

= $\langle \cos 2(\Psi_1 - \Psi_{r,1} + \Psi_{r,1} - \Psi_2) \rangle$
 $\approx \langle \cos 2(\Psi_1 - \Psi_{r,1}) \rangle \langle \cos 2(\Psi_{r,1} - \Psi_2) \rangle$
= $R_1 \cdot R_{21}$.

• Since we are using the 2nd order **sub-event** plane for our ρ_{00} calculations, we must use R_{21}^{Sub} instead.

$$R_{21}^{Sub} = R_{21}/\sqrt{2}$$

Phys. Rev. C 98, 044907

Acceptance Correction QA

- Input a ρ_{00} value to acceptance simulation.
- Grab output ρ_{00} and apply acceptance correction.
- Input and acceptance corrected output match!

1st Order EPD EP Resolution & R₂₁^{Sub}

 η weights implemented

ϕ -meson ρ_{00} vs p_T

Default K^{*0} PID and Reconstruction settings

 $\frac{\text{PID}}{\text{K}^{+/-}}$ |DCA| < 2.0 If TPC: $|n\sigma_{\text{K}}| < 2.0$ Else, use TOF: 0.16 < m2 < 0.36

 $\pi^{+/-}$ |DCA| < 2.0 If TPC: $|n\sigma_{\pi}| < 2.0$ Else, use TOF: -0.2 < m2 < 0.15 Fitting+BG subtraction Rotated pairs background Background normalized to tail of signal+background, m=[1.15,1.2] GeV Breit-wigner + residual poly2 for fit Fit region m = [0.77, 1.06] GeV Integration signal extraction in region $[m-2\Gamma,m-2\Gamma]$

Raw K^{*0} Yields vs cos(θ^{*})

20-60% Centrality $p_T = [1.2, 1.8] \text{ GeV/c}$

Poly2 residual backgrounds have similar shapes in each $\cos(\theta^*)$ bin.

 K^{*0} raw ρ_{00} vs p_T

20-60% Centrality

Efficiency vs $cos(\theta^*)$ will be performed with the same simulation procedure as ϕ . No ToF Matching Efficiency.

Acceptance + Resolution correction.

We have everything for the resolution correction already.

Summary and Outlook

Efficiency vs. $cos(\theta^*)$ linear trends are consistent between BES-I and BES-II.

First look at fully corrected ϕ -meson ρ_{00} for 19.6 GeV BES-II data set. We want to do some more QA for the acceptance + resolution correction step.

First look at raw ρ_{00} for K*⁰ for 19.6 GeV BES-II data set. We will perform efficiency, acceptance and resolution corrections very similarly to ϕ .

THANK YOU FOR YOUR ATTENTION!

BACKUP SLIDES

ϕ Meson Efficiency vs cos(θ^*)

Using method laid out by Xu Sun in his analysis note from BES-I:

- Use Pythia6 for sim.
 - Decayed K^+ and K^- will go through a MC process to simulate TPC and ToF effect.
 - Two independent random numbers will be generated for each decay daughter and compared with TPC Kaon tracking efficiency and ToF matching efficiency (with different fitting procedure described in 3.1.3) in a specific binning as shown in Sec. 3.1.1 and 3.1.3.
 - If both random numbers are smaller than the corresponding Kaon efficiency, this track will be kept, otherwise, this track will be killed $(\epsilon_{p_T,|\eta|<1} = \epsilon_{TPC} * \epsilon_{ToF})$.
 - If both K^+ and K^- survived from above MC process, reconstructed ϕ -meson will be filled into a $\cos(\theta^*)$ histogram and compared with MC distribution to extract ϕ -meson efficiency.

ToF Matching Efficiency

- Evaluated using real data.
- N_{TPC} = tracks passing strict $|n\sigma| < 0.6$ cut in addition to TPC performance cuts in attempts to accurately identify desired daughter particle, K^{+/-}.
- N_{ToF} = tracks with $\beta > 0$ and pass the above cuts.
- Matching Efficiency = N_{ToF} / N_{TPC}
- There is some hadron contamination addressed by applying fit excluding specific regions of matching efficiency.

φ Meson Signal Extraction

Kaon cuts $0.16 < M^2 < 0.36 \text{ GeV/c}^2$ $|n\sigma| < 2.5$

Full 19.6 GeV data set.

Mixed event background normalized to the same event signal between [1.04,1.05].

Subtract normalized mixed event background from same event signal.

φ Meson Invariant Mass

values from above.

Invariant Mass Yields

Bin counting

Simply count the individual bins between $[m_{\phi} - 2\Gamma, m_{\phi} + 2\Gamma]$ and subtract integrated linear background in same range.

Integrated

5/25/22

 Use BW+poly1 fit in individual cos(θ*) bins and subtract integrated linear background in same range.

Fit yields vs $cos(\theta^*)$ with following function to extract ρ_{00} .

$$\frac{dN}{d\cos\theta^*} = N_0 \times \left[(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2 \right]$$

Nucl. Phys.B18,332(1970)

BES-I/II TPC Efficiency Comparison

5/25/22

BES-I/II ToF Matching Efficiency Comparison

BES-I

BES-II

BES-I/II ToF Matching Efficiency Comparison

BES-I

BES-II

ϕ -meson ρ_{00} vs p_T : Systematics

- 1. Choose central values for each source of systematic error.
- 2. Vary one cut at a time while keeping the others at the default value. Calculate ρ_{00} for each variation and calculate the sources error with:

$$\Delta \rho_{00,sys}^{i} = \frac{\rho_{00,max}^{i} - \rho_{00,min}^{i}}{\sqrt{12}}$$

3. Combine all sources of systematics:

$$\Delta \rho_{00,sys} = \sqrt{\sum_{i} (\Delta \rho_{00,sys}^{i})^2}$$

	Central	Variations
dca	< 2.0	< 2.0, < 2.5, < 3.0
$ n\sigma_K $	< 2.5	< 2.0, < 2.5, < 3.0
Normalization range for mixed-events background	$[1.04, \ 1.05]$	[1.04, 1.05], [0.99, 1.00] and both
Yield extraction	breit-wigner integration	bin counting and breit-wigner integration
Counting and integration range	$< 2.0\sigma$	$< 2.0\sigma, < 2.5\sigma, < 3.0\sigma$

 $K^{*0} \ \rho_{00} \ vs \ p_T$

5/25/22

Increase in K*⁰ ρ_{00} in low p_T region

- Loss of information due to minimum p_T cut.
- Below results are from simulation.

Rotated Same Event BG, ToF && TPC

$\frac{1}{1} \frac{1}{1} \frac{1}$

K^{*0} Meson Signal Extraction

Kaon cuts $0.16 < M^2 < 0.36 \text{ GeV/c}^2$ $|n\sigma| < 2.0$

Pion cuts -0.2 < M^2 < 0.15 GeV/c² $|n\sigma|$ < 2.0

 ${\sim}10\%$ of 19.6 GeV data set.

Rotated pairs background normalized to the same event signal between [1.15,1.20].

Subtract normalized rotated event background from same event signal.

Performed same analysis with mixed event background.

PID Selection Difference

Raw ρ_{00} using BW integration for yields is shown.

Points are consistent in pT bins ≥ 1.2 GeV/c.

pT < 1.0 GeV/c was not presented for BES-I. Low pT cut effects.

Statistical uncertainty is slightly lower for ToF || TPC (BES-I method).

pt = 0.6000:	ToF TPC = 0.4842 +/- 0.0079 (stat)	ToF && TPC = 0.5241 +/- 0.0137 (stat)	sigma = 2.52
pt = 1.0000:	ToF TPC = 0.3749 +/- 0.0069 (stat)	ToF && TPC = 0.3953 +/- 0.0090 (stat)	sigma = 1.81
pt = 1.5000:	ToF TPC = 0.3356 +/- 0.0066 (stat)	ToF && TPC = 0.3247 +/- 0.0078 (stat)	sigma = 1.07
pt = 2.1000:	ToF TPC = 0.3141 +/- 0.0114 (stat)	ToF && TPC = 0.3303 +/- 0.0123 (stat)	sigma = 0.97
pt = 2.7000:	ToF TPC = 0.3271 +/- 0.0251 (stat)	ToF && TPC = 0.3386 +/- 0.0255 (stat)	sigma = 0.32
pt = 3.60 <u>0</u> 0:	ToF TPC = 0.2926 +/- 0.0657 (stat)	ToF && TPC = 0.2579 +/- 0.0670 (stat)	sigma = 0.37

pT = [0.4, 0.8] GeV/c (20-60%)

 $2/7 < \cos(\theta^*) < 3/7$

ToF && TPC

 $1/7 < \cos(\theta^*) < 2/7$

0.95

0.8

 $4/7 < \cos(\theta^*) < 5/7$

pT = [0.8,1.2] GeV/c (20-60%)

0.8 0.85 0.9 0.95

140 ×10°

120

100

160

140F

120E

100F

80

ToF && TPC

 $4/7 < \cos(\theta^*) < 5/7$

pT = [1.2,1.8] GeV/c (20-60%)

0.8699

Std Dev 0.07267

ToF || TPC

200

100

400

200

0.75

0.75

0.8 0.85 0.9 0.95

 $2/7 < \cos(\theta^*) < 3/7$

600×10°

500

Std Dev 0.07248

 $4/7 < \cos(\theta^*) < 5/7$

pT = [1.8,2.4] GeV/c (20-60%)

ToF && TPC

20 15

pT = [2.4,3.0] GeV/c (20-60%)

 $5/7 < \cos(\theta^*) < 6/7$

100

3000

0.8 0.85 0.9 0.95

0.75 0.8 0.85 0.9 0.95

 $6/7 < \cos(\theta^*) < 7/7$

tries

1.05

Mean 0.8707

Std Dev 0.0366

0 75

6000

5000

4000

0.95

0.8 0.85 0.9

0.75

0.85

09 095

pT = [3.0,4.2] GeV/c (20-60%)

0.874

Integrated Yields

0.85 0.9 0.95

0.9

0.95

0 75

0.8 0.85

5/25/22

43