# STAR Forward Tracker Alignment

Gavin Wilks (gwilks3@uic.edu) University of Illinois at Chicago December 6<sup>th</sup>, 2022



## Alignment (global) Parameters

#### <u>FST</u>

#### Translations: $\Delta u$ , $\Delta v$ , $\Delta w$ Rotations: $\Delta \alpha$ , $\Delta \beta$ , $\Delta \gamma$

- 3 alignment parameters for a sensor (108 sensors).
  - $\Delta w, \Delta \alpha, \Delta \beta = 0$ , since we assume they lie flat on the wedge.
- 6 per wedge (36 wedges).
- 6 per FST half (2 halves).
- 6 for FST.
- 558 alignment parameters.



CMS, doi:10.1088/1748-0221/9/06/P06009.



### Changes to Simulation and Tracking Code

- FTT hits now added in proper order to GBL track.
- $\phi$ -gap between outer sensors is properly accounted for FST hit reconstruction.
- Hit selection for FST has been updated (as of 12/02/22):
  - If two or more hits exist within the acceptance zone on the same sensor, we accept the closest one.
  - If two or more hits exist within the acceptance zone on different sensors in the same FST plane, we accept both.
    - Small portion of tracks, but it is possible, especially with misalignment.

- Misalign 1 inner sensor (sensorIdx = 36) in FST simulated geometry.
- Throw mu+ with particle gun with following settings:
  - $4.99 < p_T < 5.0 \text{ GeV/c}$
  - $2.9 < \eta < 4.4$
  - $0.9 < \phi < 1.7$  rad
  - B = 0 T
- Require hits on sensor 36.
- Fit with GenFit Kalman filter and then refit with GenFit GBL.
- Output all necessary data to Mille.dat files. Mille.dat files are then fed to pede.
- Fix rotations about u-axis and v-axis, in addition to w translation all to 0.
- Matrix inversion used to solve for alignment parameters.

Real Track Finding + No Seed (Real Case)

| Parameter             | Input | Output | Error | Global<br>Corr. |
|-----------------------|-------|--------|-------|-----------------|
| Δu (µm)               | 50.0  | 32.8   | 2.4   | 0.002           |
| $\Delta v (\mu m)$    | 50.0  | 28.3   | 1.2   | 0.955           |
| $\Delta\gamma$ (mrad) | 2.000 | 2.074  | 0.014 | 0.955           |

MC Track Finding + No Seed

| Parameter             | Input | Output | Error | Global<br>Corr. |
|-----------------------|-------|--------|-------|-----------------|
| Δu (µm)               | 50.0  | 42.3   | 2.4   | 0.006           |
| $\Delta v (\mu m)$    | 50.0  | 31.7   | 1.2   | 0.955           |
| $\Delta\gamma$ (mrad) | 2.000 | 2.064  | 0.014 | 0.955           |

#### Real Track Finding + Use MC Track as Seed

MC Track Finding + Use MC Track as Seed

| Parameter             | Input | Output | Error | Global<br>Corr. | Parameter             | Input | Output | Error | Global<br>Corr. |
|-----------------------|-------|--------|-------|-----------------|-----------------------|-------|--------|-------|-----------------|
| Δu (µm)               | 50.0  | 38.3   | 2.2   | 0.003           | $\Delta u \ (\mu m)$  | 50.0  | 46.8   | 2.2   | 0.004           |
| $\Delta v (\mu m)$    | 50.0  | 50.7   | 1.2   | 0.955           | $\Delta v (\mu m)$    | 50.0  | 50.2   | 1.2   | 0.955           |
| $\Delta\gamma$ (mrad) | 2.000 | 1.954  | 0.013 | 0.955           | $\Delta\gamma$ (mrad) | 2.000 | 1.975  | 0.013 | 0.955           |

Real Track Finding + MC FST hits + No Seed

| Parameter             | Input | Output | Error | Global<br>Corr. |
|-----------------------|-------|--------|-------|-----------------|
| Δu (µm)               | 50.0  | 41.3   | 2.4   | 0.002           |
| $\Delta v (\mu m)$    | 50.0  | 27.9   | 1.2   | 0.955           |
| $\Delta\gamma$ (mrad) | 2.000 | 2.093  | 0.014 | 0.955           |

Real Track Finding + MC FST hits + MC Seed

| Parameter             | Input | Output | Error | Global<br>Corr. |
|-----------------------|-------|--------|-------|-----------------|
| $\Delta u \ (\mu m)$  | 50.0  | 45.7   | 2.2   | 0.001           |
| $\Delta v (\mu m)$    | 50.0  | 50.6   | 1.2   | 0.955           |
| $\Delta\gamma$ (mrad) | 2.000 | 1.971  | 0.013 | 0.955           |

| Track Finding<br>Method (FTT) | Hit Finding Method<br>(FST) | Seed?         | # "Good"<br>Parameters | # "Bad"<br>Parameters |
|-------------------------------|-----------------------------|---------------|------------------------|-----------------------|
| Real                          | Real                        | No            | 0                      | 3                     |
| Real                          | Real                        | Yes, MC Track | 1                      | 2                     |
| Real                          | MC                          | No            | 0                      | 3                     |
| Real                          | MC                          | Yes, MC Track | 2                      | 1                     |
| MC                            | MC                          | No            | 0                      | 3                     |
| MC                            | MC                          | Yes, MC Track | 3                      | 0                     |

Status of Alignment:

- "Good": Parameter found within  $2\sigma$  of its input.
- "Bad": Parameter found outside  $2\sigma$  of its input.

With zero field alignment, it seems that poorly determined track momentum may be causing "Bad" output alignment parameters.

#### Inner Sensor MC – RC (x and y) No Misalignment



#### Inner Sensor MC – RC (r and φ) No Misalignment



#### Inner Sensor Predicted – Truth (x and y) No Misalignment



#### Inner Sensor Predicted – Truth (r and φ) No Misalignment



# $p_T$ Resolution

- Simulate  $\mu$ + with Field ON using or not using alignment parameters
- Throw particles in same region as alignment simulation but use wider  $p_T$  range.
- Large peak around 1?
- On the plus side, the mean and std. dev. consistent within uncertainties for real and ideal alignment tables in reconstruction.

![](_page_12_Figure_5.jpeg)

### Charge MisID

- Simulate  $\mu$ + with Field ON using or not using alignment parameters
- Throw particles in same region as alignment simulation but use wider  $p_T$  range.
- No significant slope in the ratio plot for Real / Ideal parameters.

![](_page_13_Figure_4.jpeg)

#### Outer Sensor Alignment

- Similar procedure to inner sensor alignment.
- Throw mu+ with following settings for sensor (37, 38, 37+38):
  - $4.99 < p_T < 5.0 \text{ GeV/c}$
  - $2.3 < \eta < 3.5$
  - $(0.9 < \phi < 1.4, \quad 1.2 < \phi < 1.7, \quad 0.9 < \phi < 1.7)$
  - B = 0 T

![](_page_14_Figure_7.jpeg)

New Local Coordinate

![](_page_14_Figure_9.jpeg)

• Local coordinate system shifted such that the +u axis is along the center of the strip.

NOTE: These results do not include changes to FST hit selection.

#### Sensor 37 Only

NOTE: These results do not include changes to FST hit selection. New Coordinate System

| Parameter             | Input | Output | Error | Global Corr. | Parameter             | Input | Output | Error | Global Corr. |
|-----------------------|-------|--------|-------|--------------|-----------------------|-------|--------|-------|--------------|
| $\Delta u \ (\mu m)$  | 0.0   | -61.2  | 14.5  | 0.855        | Δu (μm)               | 0.0   | -61.7  | 14.6  | 0.003        |
| $\Delta v (\mu m)$    | 0.0   | 7.1    | 8.6   | 0.990        | $\Delta v \ (\mu m)$  | 0.0   | -0.8   | 8.5   | 0.990        |
| $\Delta\gamma$ (mrad) | 0.000 | 0.012  | 0.040 | 0.990        | $\Delta\gamma$ (mrad) | 0.000 | 0.009  | 0.040 | 0.990        |

#### Sensor 38 Only

Original Coordinate System New Coordinate System **Global Corr.** Input Output Error Parameter Parameter Input Output **Global Corr.** Error 0.0 14.5 0.855  $\Delta u (\mu m)$ -58.9 0.0 14.7 0.003  $\Delta u (\mu m)$ -57.4  $\Delta v (\mu m)$ 0.0 0.8 8.7 0.990  $\Delta v (\mu m)$ 0.0 9.1 8.5 0.990  $\Delta \gamma$  (mrad)  $\Delta \gamma$  (mrad) 0.000 -0.043 0.040 0.990 0.000 -0.043 0.040 0.990

#### Sensor 37 and 38 with 1 set of parameters

Original Coordinate System

Original Coordinate System

New Coordinate System

|                       |       |        |       |              | 1.0.0                 | e e e i amate s | <i>J</i> stem |       |              |
|-----------------------|-------|--------|-------|--------------|-----------------------|-----------------|---------------|-------|--------------|
| Parameter             | Input | Output | Error | Global Corr. | Parameter             | Input           | Output        | Error | Global Corr. |
| $\Delta u \ (\mu m)$  | 0.0   | -10.9  | 6.7   | 0.004        | Δu (µm)               | 0.0             | -48.1         | 13.1  | 0.003        |
| $\Delta v (\mu m)$    | 0.0   | -3.9   | 7.7   | 0.990        | $\Delta v \ (\mu m)$  | 0.0             | -4.0          | 7.6   | 0.990        |
| $\Delta\gamma$ (mrad) | 0.000 | 0.015  | 0.036 | 0.990        | $\Delta\gamma$ (mrad) | 0.000           | 0.016         | 0.036 | 0.990        |

#### $\Delta u$ in Outer Sensor Alignment?

- With no misalignment we find a non-zero  $\Delta u$ .
- Consistent with residuals.
  - Need to understand why this occurs.
  - Geometry bias?

![](_page_16_Figure_5.jpeg)

NOTE: These results do not include changes to FST hit selection.

#### Outer Sensor MC – RC (x and y) No Misalignment

![](_page_17_Figure_1.jpeg)

#### Outer Sensor MC – RC (r and $\varphi$ ) No Misalignment

![](_page_18_Figure_1.jpeg)

#### Outer Sensor Predicted – Truth (x and y) No Misalignment

![](_page_19_Figure_1.jpeg)

#### Outer Sensor Predicted – Truth (r and φ) No Misalignment

![](_page_20_Figure_1.jpeg)

#### Summary and Outlook (Inner)

- We can find the correct alignment parameters for the most ideal case.
- Using MC momentum as the seed of the fit appears to be the most crucial component.
- Charge Mis-ID and  $p_T$  Resolution match whether we use the ideal alignment tables or the real alignment tables directly from Millepede.
  - Why is there a large peak at 1 for all cases?
  - Try Misaligning two sensors and then three sensors and repeat this test.
- There is an updated sTGC geometry that implements alignment tables.
  - Add sTGC misalignment in alignment and tracking software.
  - Test cartesian vs polar detector for alignment.

### Summary and Outlook (Outer)

- Consistently extract non-zero  $\Delta u$  for single sensors no matter the local coordinate system.
  - Investigate possible Geometry bias.
- Combining the sensors can somehow reduce this unknown bias.
  - Related to the possible bias above.
- Track for aligning the test inner sensor can pass through the outer sensors on the other planes and could therefore be impacted.

# BACKUP

### Millepede-II with GBL

- Track parameterized by  $q = (u_i, ..., u_{#planes})$ , where  $u_i$  vectors are offsets at FST or sTGC plane.
- Minimize the following function, where  $\mathbf{p}$  are the alignment parameters and  $\mathbf{q}_i$  are the track parameters.

$$\chi^{2}(\mathbf{p},\mathbf{q}) = \sum_{j}^{\text{tracks measurements}} \left(\frac{m_{ij} - f_{ij}(\mathbf{p},\mathbf{q}_{j})}{\sigma_{ij}}\right)^{2}$$

• Data necessary to run Millepede-II:

# of local parametersarray:  $\left(\frac{\partial f}{\partial q_j}\right)$ # of global parametersarray:  $\left(\frac{\partial f}{\partial p_l}\right)$ residuals =  $m_{ij} - f_{ij}(\boldsymbol{p}, \boldsymbol{q}_j)$ array:  $\left(\frac{\partial f}{\partial p_l}\right)$  $\sigma$  = standard deviation of the measurementlabel array, l

https://www.desy.de/~kleinwrt/MP2/doc/html/draftman\_page.html

### Changes to Tracking Code

![](_page_25_Figure_1.jpeg)

- GenFit DetPlanes are placed with coordinate system (u,v,w) matching the sensor coordinate systems.
  - DetPlanes can be misaligned.
- Sensor hits are placed in local coordinate system.
  - When measurement is added to track, plane is specified. (Proper global placement)
- Sensor ID added to FwdHit object.

#### Changes to Tracking Code

#### Proj. Det Plane

![](_page_26_Figure_2.jpeg)

- Track is now projected to individual FST sensor GenFit::DetPlane.
- Previously projected to (x,y) position on midplane between sensors.
- Could be important if there are xz, yz rotations.
- Higher precision for alignment at cost of computation.

#### Alignment (global) Parameters

#### FTT (sTGC)

- 6 alignment parameters per pentagon (16 pentagons).
- 6 per plane (4 planes).
- 6 for sTGC.
- 126 alignment parameters.

![](_page_27_Figure_6.jpeg)

![](_page_27_Figure_7.jpeg)

## Hierarchy of Alignment Parameters

- Each track prediction for a sensor relies on the larger structures it is contained within.
  - Sensor on wedge, wedge on FST half, half on Full FST, full on TPC.
- We can calculate the all the global derivatives using chain rule

$$\frac{\mathrm{d}f_{u/v}}{\mathrm{d}\Delta\mathbf{p}_l} = \frac{\mathrm{d}\Delta\mathbf{p}_s}{\mathrm{d}\Delta\mathbf{p}_l} \cdot \frac{\mathrm{d}f_{u/v}}{\mathrm{d}\Delta\mathbf{p}_s},$$

 $f_{u/v}$  = track prediction  $d\Delta \mathbf{p}_{s}$  = change in sensor global parameter  $d\Delta \mathbf{p}_{l}$  = change in containing structure global parameter

- The sum of all sensors global parameters pertaining to a larger substructure are constrained to zero to prevent shift of overall structure by the sub-components.
- Constraints added by .txt file input to pede.

CMS, doi:10.1088/1748-0221/9/06/P06009.

STAR Forward Upgrade F2F Meeting

### Multiple Scattering in GBL

- Multiple scattering covariance from the previous measurement plane accounted for at the current measurement plane in the GBL trajectory.
- The covariance matrix of scattering angle (w.r.t track direction) is calculated using:

$$\sigma_{\theta} = \frac{0.0136}{p} \sqrt{x/\chi_0} [1 + 0.038 ln(x/\chi_0)].$$

$$V_k = \begin{pmatrix} \sigma_\theta^2 & 0\\ 0 & \sigma_\theta^2 \end{pmatrix}.$$

- Where x is track length within the sensor,  $\chi_0$  is the radiation length of the material and p is the magnitude of momentum.
- Kalman filter can treat material as continuous, while GBL uses discrete scatters.

J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)

#### GENFIT2 Classes for GBL

GblPoint.h/cc: contains all data for 2D measurements (derivatives, residuals, covariance, etc.).

- GblTrajectory.h/cc: holds all GblPoints, can be fit or used directly for Mille output.
- MilleBinary.h/cc: Organizes the data from GblTrajectory into the exact format required for pede.
- GFGbl.h/cc: GBL fitter class implementing Mille binary file output and data collection. Originally written for BELLE II alignment.

StFwdGbl.h/cc: Adapted version of GFGbl for use with the Forward Tracker Alignment.

# Single Sensor Alignment

- Mille.dat files are then fed to pede.
- Can specify initial values of alignment parameters and their pre-sigma (helps stabilize a poorly defined parameter).

| Paramet | ter           |          |   |
|---------|---------------|----------|---|
| label   | initial_value | presigma | ] |
| label   | initial_value | presigma | 1 |

Example of pede parameter entries.

- Fix rotations about u-axis and v-axis, in addition to w translation by setting pre-sigma < 0.0.
- Matrix inversion used to solve for alignment parameters.
- ~50k tracks used for each trial.

#### Tracking performance

![](_page_32_Figure_1.jpeg)

• With ideal sensor placement, pT resolution is nearly identical.

![](_page_33_Figure_0.jpeg)

## Single Sensor Alignment Results

#### No Misalignment

| Parameter             | Input | Output | Error  |
|-----------------------|-------|--------|--------|
| $\Delta u \ (\mu m)$  | 0.0   | -0.3   | 2.9    |
| $\Delta v (\mu m)$    | 0.0   | 0.0    | 1.5    |
| $\Delta\gamma$ (mrad) | 0.0   | 4.3E-3 | 1.7E-2 |

#### w-axis rotation

| Parameter             | Input | Output | Error |
|-----------------------|-------|--------|-------|
| $\Delta u \ (\mu m)$  | 0.0   | -0.2   | 3.2   |
| $\Delta v (\mu m)$    | 0.0   | -2.1   | 1.7   |
| $\Delta\gamma$ (mrad) | 2.00  | 1.91   | 0.02  |

#### u shift

| Parameter             | Input | Output | Error  |
|-----------------------|-------|--------|--------|
| $\Delta u \ (\mu m)$  | 50.0  | 46.4   | 2.9    |
| $\Delta v (\mu m)$    | 0.0   | -1.2   | 1.5    |
| $\Delta\gamma$ (mrad) | 0.0   | 1.0E-2 | 1.7E-2 |

| v shift                |       |        |        |  |  |  |  |  |
|------------------------|-------|--------|--------|--|--|--|--|--|
| Parameter              | Input | Output | Error  |  |  |  |  |  |
| $\Delta u \ (\mu m)$   | 0.0   | 1.6    | 2.9    |  |  |  |  |  |
| $\Delta v (\mu m)$     | 50.0  | 44.1   | 1.6    |  |  |  |  |  |
| $\Delta \gamma$ (mrad) | 0.0   | 2.9E-2 | 1.8E-2 |  |  |  |  |  |

## Single Sensor Alignment Results

| u,v shift + w-axis rotation (~50k tracks) |       |        | u,v shift + w-axis rotation (~850k tracks) |                       |       |        |       |
|-------------------------------------------|-------|--------|--------------------------------------------|-----------------------|-------|--------|-------|
| Parameter                                 | Input | Output | Error                                      | Parameter             | Input | Output | Error |
| $\Delta u \ (\mu m)$                      | 50.0  | 46.1   | 3.2                                        | $\Delta u \ (\mu m)$  | 50.0  | 49.3   | 0.9   |
| $\Delta v (\mu m)$                        | 50.0  | 43.2   | 1.7                                        | $\Delta v (\mu m)$    | 50.0  | 41.5   | 0.5   |
| $\Delta\gamma$ (mrad)                     | 2.0   | 1.92   | 0.02                                       | $\Delta\gamma$ (mrad) | 2.0   | 1.938  | 0.006 |

- Single FST inner sensor can be aligned to some degree with GenFit + Millepede II.
  - Slight discrepancy between input and output parameters.
  - Perhaps due to correlation between u and v coordinates?
    - Covariance is diagonalized for use in Millepede.

### Charge MisID

- Simulate  $\mu$ + with Field ON using or not using alignment parameters
- Throw particles in same region as alignment simulation but use wider  $p_T$  range.
- No significant slope in the ratio plot for Real / Ideal parameters.

![](_page_36_Figure_4.jpeg)

## p<sub>T</sub> Resolution

- Simulate  $\mu$ + with Field ON using or not using alignment parameters
- Throw particles in same region as alignment simulation but use wider  $p_T$  range.
- Large peak around 1  $\rightarrow$  Try investigating lower  $p_T$  range.
- On the plus side, the mean and std. dev. are nearly identical for real and ideal alignment tables in reconstruction.

![](_page_37_Figure_5.jpeg)

#### Summary and Outlook

- Single FST inner sensor has been somewhat successfully aligned using GenFit + Millepede II.
  - Discrepancy between input and output due to correlation between u and v coordinates?
- Attempt alignment of the following:
  - Outer silicon sensors
  - Multiple sensors simultaneously (just inner, just outer, and both)
  - Build up hierarchy (wedge and sensor simultaneously, etc.)
  - Single sTGC pentagon module
- Study effect of small misalignments on tracking performance and improvement after alignment.