STAR Forward Tracker Alignment

Gavin Wilks (gwilks3@uic.edu)
University of Illinois at Chicago
December 6 ${ }^{\text {th }}, 2022$

Alignment (global) Parameters

FST

Translations: $\Delta u, \Delta v, \Delta w$
Rotations: $\Delta \alpha, \Delta \beta, \Delta \gamma$

- 3 alignment parameters for a sensor (108 sensors).
- $\Delta w, \Delta \alpha, \Delta \beta=0$, since we assume they lie flat on the wedge.
- 6 per wedge (36 wedges).
- 6 per FST half (2 halves).
- 6 for FST.
- 558 alignment parameters.

CMS, doi:10.1088/1748-0221/9/06/P06009.

Changes to Simulation and Tracking Code

- FTT hits now added in proper order to GBL track.
- φ-gap between outer sensors is properly accounted for FST hit reconstruction.
- Hit selection for FST has been updated (as of 12/02/22):
- If two or more hits exist within the acceptance zone on the same sensor, we accept the closest one.
- If two or more hits exist within the acceptance zone on different sensors in the same FST plane, we accept both.
- Small portion of tracks, but it is possible, especially with misalignment.

Single Inner Sensor Alignment

- Misalign 1 inner sensor (sensorIdx = 36) in FST simulated geometry.
- Throw mu+ with particle gun with following settings:
- $4.99<\mathrm{p}_{\mathrm{T}}<5.0 \mathrm{GeV} / \mathrm{c}$
- $2.9<\eta<4.4$
- $0.9<\varphi<1.7 \mathrm{rad}$
- $\mathrm{B}=0 \mathrm{~T}$
- Require hits on sensor 36.
- Fit with GenFit Kalman filter and then refit with GenFit GBL.
- Output all necessary data to Mille.dat files. Mille.dat files are then fed to pede.
- Fix rotations about u-axis and v-axis, in addition to w translation all to 0 .
- Matrix inversion used to solve for alignment parameters.

Single Inner Sensor Alignment

Real Track Finding + No Seed (Real Case)				
Parameter Input Output Error Global Corr.				
$\Delta \mathrm{u}(\mu \mathrm{m})$	50.0	32.8	2.4	0.002
$\Delta \mathrm{v}(\mu \mathrm{m})$	50.0	28.3	1.2	0.955
$\Delta \gamma(\mathrm{mrad})$	2.000	2.074	0.014	0.955

Real Track Finding + Use MC Track as Seed

Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	50.0	38.3	2.2	0.003
$\Delta \mathrm{v}(\mu \mathrm{m})$	50.0	50.7	1.2	0.955
$\Delta \gamma(\mathrm{mrad})$	2.000	1.954	0.013	0.955

MC Track Finding + No Seed

Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	50.0	42.3	2.4	0.006
$\Delta \mathrm{v}(\mu \mathrm{m})$	50.0	31.7	1.2	0.955
$\Delta \gamma(\mathrm{mrad})$	2.000	2.064	0.014	0.955

MC Track Finding + Use MC Track as Seed

Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	50.0	46.8	2.2	0.004
$\Delta \mathrm{v}(\mu \mathrm{m})$	50.0	50.2	1.2	0.955
$\Delta \gamma(\mathrm{mrad})$	2.000	1.975	0.013	0.955

Single Inner Sensor Alignment

Real Track Finding + MC FST hits + No Seed

Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	50.0	41.3	2.4	0.002
$\Delta \mathrm{v}(\mu \mathrm{m})$	50.0	27.9	1.2	0.955
$\Delta \gamma(\mathrm{mrad})$	2.000	2.093	0.014	0.955

Real Track Finding + MC FST hits + MC Seed

Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	50.0	45.7	2.2	0.001
$\Delta \mathrm{v}(\mu \mathrm{m})$	50.0	50.6	1.2	0.955
$\Delta \gamma(\mathrm{mrad})$	2.000	1.971	0.013	0.955

Single Inner Sensor Alignment

Track Finding Method (FTT)	Hit Finding Method (FST)	Seed?	\#"Good" Parameters	\#"Bad" Parameters
Real	Real	No	0	3
Real	Real	Yes, MC Track	1	2
Real	MC	No	0	3
Real	MC	Yes, MC Track	2	1
MC	MC	No	0	3
MC	MC	Yes, MC Track	3	0

Status of Alignment:

- "Good": Parameter found within 2σ of its input.
- "Bad": Parameter found outside 2σ of its input.

With zero field alignment, it seems that poorly determined track momentum may be causing "Bad" output alignment parameters.

Inner Sensor MC - RC (x and y) No Misalignment

Inner Sensor MC - RC (r and φ) No Misalignment

R Strip 2

R Strip 3

Inner Sensor Predicted - Truth (x and y) No Misalignment

R Strip

R Strip 3

R Strip 0

R Strip 2

R Strip

R Strip 3

Inner Sensor Predicted - Truth (r and φ) No Misalignment

R Strip 1

R Strip 3

R Strip 2

R Strip 3

p_{T} Resolution

- Simulate $\mu+$ with Field ON using or not using alignment parameters
- Throw particles in same region as alignment simulation but use wider p_{T} range.
- Large peak around 1 ?
- On the plus side, the mean and std. dev. consistent within uncertainties for real and ideal alignment tables in reconstruction.

idealtable

Charge MisID

- Simulate $\mu+$ with Field ON using or not using alignment parameters
- Throw particles in same region as alignment simulation but use wider p_{T} range.
- No significant slope in the ratio plot for Real / Ideal parameters.

Outer Sensor Alignment

- Similar procedure to inner sensor alignment.
- Throw mu+ with following settings for sensor $(37,38,37+38)$:
- $4.99<\mathrm{p}_{\mathrm{T}}<5.0 \mathrm{GeV} / \mathrm{c}$
- $2.3<\eta<3.5$
- $(0.9<\varphi<1.4, \quad 1.2<\varphi<1.7, \quad 0.9<\varphi<1.7)$
- $\mathrm{B}=0 \mathrm{~T}$

Original Local Coordinate
System

New Local Coordinate
System

- Local coordinate system shifted such that the $+u$ axis is along the center of the strip.

Sensor 37 Only
Original Coordinate System
NOTE: These results do not include changes to FST hit selection. New Coordinate System

Parameter	Input	Output	Error	Global Corr.	Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	0.0	-61.2	14.5	0.855	$\Delta \mathrm{u}(\mu \mathrm{m})$	0.0	-61.7	14.6	0.003
$\Delta \mathrm{v}(\mu \mathrm{m})$	0.0	7.1	8.6	0.990	$\Delta \mathrm{v}(\mu \mathrm{m})$	0.0	-0.8	8.5	0.990
$\Delta \gamma(\mathrm{mrad})$	0.000	0.012	0.040	0.990	$\Delta \gamma(\mathrm{mrad})$	0.000	0.009	0.040	0.990

Sensor 38 Only
Original Coordinate System
New Coordinate System

Parameter	Input	Output	Error	Global Corr.	Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	0.0	-58.9	14.5	0.855	$\Delta \mathrm{u}(\mu \mathrm{m})$	0.0	-57.4	14.7	0.003
$\Delta \mathrm{v}(\mu \mathrm{m})$	0.0	0.8	8.7	0.990	$\Delta \mathrm{v}(\mu \mathrm{m})$	0.0	9.1	8.5	0.990
$\Delta \gamma(\mathrm{mrad})$	0.000	-0.043	0.040	0.990	$\Delta \gamma(\mathrm{mrad})$	0.000	-0.043	0.040	0.990

Sensor 37 and 38 with 1 set of parameters
Original Coordinate System
New Coordinate System

Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	0.0	-10.9	6.7	0.004
$\Delta \mathrm{v}(\mu \mathrm{m})$	0.0	-3.9	7.7	0.990
$\Delta \gamma(\mathrm{mrad})$	0.000	0.015	0.036	0.990

Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	0.0	-48.1	13.1	0.003
$\Delta \mathrm{v}(\mu \mathrm{m})$	0.0	-4.0	7.6	0.990
$\Delta \gamma(\mathrm{mrad})$	0.000	0.016	0.036	0.990

$\Delta \mathrm{u}$ in Outer Sensor Alignment?

- With no misalignment we find a non-zero Δu.
- Consistent with residuals.
- Need to understand why this occurs.
- Geometry bias?

R Strip 5

R Strip 7

Outer Sensor MC - RC (x and y) No Misalignment
 R Strip 5
 R Strip 4

R Strip 6

R Strip 7

R Strip 6

R Strip 5

R Strip 7

Outer Sensor MC - RC (r and φ) No Misalignment

Outer Sensor Predicted - Truth (x and y) No Misalignment

R Strip 6

R Strip 7

R Strip 4

R Strip 5

Outer Sensor Predicted - Truth (r and φ) No Misalignment

Summary and Outlook (Inner)

- We can find the correct alignment parameters for the most ideal case.
- Using MC momentum as the seed of the fit appears to be the most crucial component.
- Charge Mis-ID and p_{T} Resolution match whether we use the ideal alignment tables or the real alignment tables directly from Millepede.
- Why is there a large peak at 1 for all cases?
- Try Misaligning two sensors and then three sensors and repeat this test.
- There is an updated sTGC geometry that implements alignment tables.
- Add sTGC misalignment in alignment and tracking software.
- Test cartesian vs polar detector for alignment.

Summary and Outlook (Outer)

- Consistently extract non-zero $\Delta \mathrm{u}$ for single sensors no matter the local coordinate system.
- Investigate possible Geometry bias.
- Combining the sensors can somehow reduce this unknown bias.
- Related to the possible bias above.
- Track for aligning the test inner sensor can pass through the outer sensors on the other planes and could therefore be impacted.

BACKUP

Millepede-II with GBL

- Track parameterized by $\boldsymbol{q}=\left(\boldsymbol{u}_{\boldsymbol{i}}, \ldots, \boldsymbol{u}_{\# \text { planes }}\right)$, where $\boldsymbol{u}_{\boldsymbol{i}}$ vectors are offsets at FST or sTGC plane.
- Minimize the following function, where \mathbf{p} are the alignment parameters and $\mathbf{q}_{\mathbf{j}}$ are the track parameters.

$$
\chi^{2}(\mathbf{p}, \mathbf{q})=\sum_{j}^{\text {tracks }} \sum_{i}^{\text {measurements }}\left(\frac{m_{i j}-f_{i j}\left(\mathbf{p}, \mathbf{q}_{j}\right)}{\sigma_{i j}}\right)^{2}
$$

- Data necessary to run Millepede-II:

```
# of local parameters
# of global parameters
residuals = mij}-\mp@subsup{f}{ij}{}(\boldsymbol{p},\mp@subsup{\boldsymbol{q}}{j}{}
```

$\sigma=$ standard deviation of the measurement
array: $\left(\frac{\partial f}{\partial q_{j}}\right)$
array: $\left(\frac{\partial f}{\partial p_{l}}\right)$
label array, l

Changes to Tracking Code

- GenFit DetPlanes are placed with coordinate system (u,v,w) matching the sensor coordinate systems.
- DetPlanes can be misaligned.
- Sensor hits are placed in local coordinate system.
- When measurement is added to track, plane is specified. (Proper global placement)
- Sensor ID added to FwdHit object.

Changes to Tracking Code

Proj. Det Plane

- Track is now projected to individual FST sensor GenFit::DetPlane.
- Previously projected to (x, y) position on midplane between sensors.
- Could be important if there are xz, yz rotations.
- Higher precision for alignment at cost of computation.

Alignment (global) Parameters

FTT (sTGC)

- 6 alignment parameters per pentagon (16 pentagons).
- 6 per plane (4 planes).
- 6 for sTGC .

CMS, doi:10.1088/1748-0221/9/06/P06009.

- 126 alignment parameters.

$+\mathbf{v}$ (local)

Hierarchy of Alignment Parameters

- Each track prediction for a sensor relies on the larger structures it is contained within.
- Sensor on wedge, wedge on FST half, half on Full FST, full on TPC.
- We can calculate the all the global derivatives using chain rule

$$
\frac{\mathrm{d} f_{u / v}}{\mathrm{~d} \Delta \mathbf{p}_{l}}=\frac{\mathrm{d} \Delta \mathbf{p}_{s}}{\mathrm{~d} \Delta \mathbf{p}_{l}} \cdot \frac{\mathrm{~d} f_{u / v}}{\mathrm{~d} \Delta \mathbf{p}_{s}}, \quad \begin{aligned}
& f_{u / v}=\text { track prediction } \\
& \mathrm{d} \Delta \mathbf{p}_{\mathrm{s}}=\text { change in sensor global parameter } \\
& \mathrm{d} \Delta \mathbf{p}_{l}=\text { change in containing structure global parameter }
\end{aligned}
$$

- The sum of all sensors global parameters pertaining to a larger substructure are constrained to zero to prevent shift of overall structure by the sub-components.
- Constraints added by .txt file input to pede.

Multiple Scattering in GBL

- Multiple scattering covariance from the previous measurement plane accounted for at the current measurement plane in the GBL trajectory.
- The covariance matrix of scattering angle (w.r.t track direction) is calculated using:

$$
\begin{gathered}
\sigma_{\theta}=\frac{0.0136}{p} \sqrt{x / \chi_{0}}\left[1+0.038 \ln \left(x / \chi_{0}\right)\right] . \\
V_{k}=\left(\begin{array}{cc}
\sigma_{\theta}^{2} & 0 \\
0 & \sigma_{\theta}^{2}
\end{array}\right) .
\end{gathered}
$$

- Where x is track length within the sensor, χ_{0} is the radiation length of the material and p is the magnitude of momentum.
- Kalman filter can treat material as continuous, while GBL uses discrete scatters.

GENFIT2 Classes for GBL

GblPoint.h/cc: contains all data for 2D measurements (derivatives, residuals, covariance, etc.).
GblTrajectory.h/cc: holds all GblPoints, can be fit or used directly for Mille output.
MilleBinary.h/cc: Organizes the data from GblTrajectory into the exact format required for pede.
GFGbl.h/cc: GBL fitter class implementing Mille binary file output and data collection. Originally written for BELLE II alignment.

StFwdGbl.h/cc: Adapted version of GFGbl for use with the Forward Tracker Alignment.

Single Sensor Alignment

- Mille.dat files are then fed to pede.
- Can specify initial values of alignment parameters and their pre-sigma (helps stabilize a poorly defined parameter).

Parameter		
label initial_value presigma label initial_value presigma	Example of pede parameter entries.	

- Fix rotations about u-axis and v-axis, in addition to w translation by setting pre-sigma <0.0.
- Matrix inversion used to solve for alignment parameters.
- ~50k tracks used for each trial.

Tracking performance

- With ideal sensor placement, pT resolution is nearly identical.

Kalman Filter Fitted
Track Chi2/NDF

GBL refitted
Track Chi2/NDF
mean Chi2/NDF $=0.9005$
Entrie
Mean
Mean

Single Sensor Alignment Results

No Misalignment

Parameter	Input	Output	Error
$\Delta u(\mu \mathrm{~m})$	0.0	-0.3	2.9
$\Delta \mathrm{v}(\mu \mathrm{m})$	0.0	0.0	1.5
$\Delta \gamma(\mathrm{mrad})$	0.0	$4.3 \mathrm{E}-3$	$1.7 \mathrm{E}-2$

u shift
Parameter
Input
:---:
$\Delta \mathrm{v}(\mu \mathrm{m})$
$\Delta \gamma(\mathrm{mrad})$

Single Sensor Alignment Results

u v shift +w -axis rotation $(\sim 50 \mathrm{k}$ tracks $)$			
Parameter	Input	Output	Error
$\Delta \mathrm{u}(\mu \mathrm{m})$	50.0	46.1	3.2
$\Delta \mathrm{v}(\mu \mathrm{m})$	50.0	43.2	1.7
$\Delta \gamma(\mathrm{mrad})$	2.0	1.92	0.02

u v shift +w -axis rotation $(\sim 850 \mathrm{k}$ tracks $)$			
Parameter	Input	Output	Error
$\Delta \mathrm{u}(\mu \mathrm{m})$	50.0	49.3	0.9
$\Delta \mathrm{v}(\mu \mathrm{m})$	50.0	41.5	0.5
$\Delta \gamma(\mathrm{mrad})$	2.0	1.938	0.006

- Single FST inner sensor can be aligned to some degree with GenFit + Millepede II.
- Slight discrepancy between input and output parameters.
- Perhaps due to correlation between u and v coordinates?
- Covariance is diagonalized for use in Millepede.

Charge MisID

- Simulate $\mu+$ with Field ON using or not using alignment parameters
- Throw particles in same region as alignment simulation but use wider p_{T} range.
- No significant slope in the ratio plot for Real / Ideal parameters.

STAR Forward Upgrade F2F Meeting

p_{T} Resolution

- Simulate $\mu+$ with Field ON using or not using alignment parameters
- Throw particles in same region as alignment simulation but use wider p_{T} range.
- Large peak around $1 \rightarrow$ Try investigating lower p_{T} range.
- On the plus side, the mean and std. dev. are nearly identical for real and ideal alignment tables in reconstruction.

Summary and Outlook

- Single FST inner sensor has been somewhat successfully aligned using GenFit + Millepede II.
- Discrepancy between input and output due to correlation between u and v coordinates?
- Attempt alignment of the following:
- Outer silicon sensors
- Multiple sensors simultaneously (just inner, just outer, and both)
- Build up hierarchy (wedge and sensor simultaneously, etc.)
- Single sTGC pentagon module
- Study effect of small misalignments on tracking performance and improvement after alignment.

