

Millepede-II with GBL

- Track parameterized by $q = (u_i, ..., u_{#planes})$, where u_i vectors are offsets at FST or sTGC plane.
- Minimize the following function, where p are the alignment parameters and q_i are the track parameters.

$$\chi^{2}(\mathbf{p},\mathbf{q}) = \sum_{j}^{\text{tracks measurements}} \left(\frac{m_{ij} - f_{ij}(\mathbf{p},\mathbf{q}_{j})}{\sigma_{ij}}\right)^{2}$$

• Data necessary to run Millepede-II:

of local parameters $\operatorname{array:} \left(\frac{\partial f}{\partial q_j}\right)$ # of global parameters $\operatorname{array:} \left(\frac{\partial f}{\partial p_l}\right)$ residuals = $m_{ij} - f_{ij}(\boldsymbol{p}, \boldsymbol{q}_j)$ $\operatorname{array:} \left(\frac{\partial f}{\partial p_l}\right)$ σ = standard deviation of the measurementlabel array, l

https://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html

Alignment (global) Parameters

<u>FST</u>

Translations: Δu , Δv , Δw

Rotations: $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$

- 3 alignment parameters for a sensor (108 sensors).
 - $\Delta w, \Delta \alpha, \Delta \beta = 0$, since we assume they lie flat on the wedge.
- 6 per wedge (36 wedges).
- 6 per FST half (2 halves).
- 6 for FST.
- 558 alignment parameters.

CMS, doi:10.1088/1748-0221/9/06/P06009.

Alignment (global) Parameters

FTT (sTGC)

- 6 alignment parameters per pentagon (16 pentagons).
- 6 per plane (4 planes).
- 6 for sTGC.
- 126 alignment parameters.

+u (local)

STAR Forward Upgrade F2F Meeting

Hierarchy of Alignment Parameters

- Each track prediction for a sensor relies on the larger structures it is contained within.
 - Sensor on wedge, wedge on FST half, half on Full FST, full on TPC.
- We can calculate the all the global derivatives using chain rule

$$\frac{\mathrm{d}f_{u/v}}{\mathrm{d}\Delta\mathbf{p}_l} = \frac{\mathrm{d}\Delta\mathbf{p}_s}{\mathrm{d}\Delta\mathbf{p}_l} \cdot \frac{\mathrm{d}f_{u/v}}{\mathrm{d}\Delta\mathbf{p}_s},$$

 $f_{u/v}$ = track prediction $d\Delta \mathbf{p}_s$ = change in sensor global parameter $d\Delta \mathbf{p}_l$ = change in containing structure global parameter

- The sum of all sensors global parameters pertaining to a larger substructure are constrained to zero to prevent shift of overall structure by the sub-components.
- Constraints added by .txt file input to pede.

CMS, doi:10.1088/1748-0221/9/06/P06009.

Multiple Scattering in GBL

- Multiple scattering covariance from the previous measurement plane accounted for at the current measurement plane in the GBL trajectory.
- The covariance matrix of scattering angle (w.r.t track direction) is calculated using:

$$\sigma_{\theta} = \frac{0.0136}{p} \sqrt{x/\chi_0} [1 + 0.038 ln(x/\chi_0)].$$

$$V_k = \begin{pmatrix} \sigma_\theta^2 & 0\\ 0 & \sigma_\theta^2 \end{pmatrix}.$$

- Where x is track length within the sensor, χ_0 is the radiation length of the material and p is the magnitude of momentum.
- Kalman filter can treat material as continuous, while GBL uses discrete scatters.

J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)

GENFIT2 Classes for GBL

GblPoint.h/cc: contains all data for 2D measurements (derivatives, residuals, covariance, etc.).

- GblTrajectory.h/cc: holds all GblPoints, can be fit or used directly for Mille output.
- MilleBinary.h/cc: Organizes the data from GblTrajectory into the exact format required for pede.

GFGbl.h/cc: GBL fitter class implementing Mille binary file output and data collection. Originally written for BELLE II alignment.

StFwdGbl.h/cc: Adapted version of GFGbl for use with the Forward Tracker Alignment.

Single Sensor Alignment

- Misalign 1 inner sensor (sensorIdx = 36) in FST simulated geometry.
- Throw mu+ with particle gun with following settings:
 - 0.2 < p_T < 2.0 GeV/c
 - 2.8 < η < 4.5
 - $0.9 < \phi < 1.7$ rad
 - B = 0 T
- Require hits on sensors: 0, 36, 72 (3 inner sensors, 3 different disks, all in same φ position.
- Fit with GenFit Kalman filter and then refit with GenFit GBL.
- Output all necessary data to Mille.dat files.

Single Sensor Alignment

- Mille.dat files are then fed to pede.
- Can specify initial values of alignment parameters and their pre-sigma (helps stabilize a poorly defined parameter).

Parameter			
label	initial_value	presigma	
label	initial_value	presigma	

Example of pede parameter entries.

- Fix rotations about u-axis and v-axis, in addition to w translation by setting pre-sigma < 0.0.
- Matrix inversion used to solve for alignment parameters.
- ~50k tracks used for each trial.

MC pT Study

- Inner sensor 36 (middle FST plane) is misaligned.
- Alignment input
 - $\Delta \gamma = 2$ mad, $\Delta u = \Delta v = 50 \ \mu m$

