sTGC Alignment

Gavin Wilks
University of Illinois at Chicago
04/28/23

$\Delta \mathrm{v}=200 \mu \mathrm{~m}$	$\sim 0.5 \mathrm{M}$ tracks			$\Delta \mathrm{v}=200 \mu \mathrm{~m}$					$\sim 5 \mathrm{M}$ tracks	
Parameter	Input	Output	Error	Global Corr.	Parameter	Input	Output	Error	Global Corr.	
$\Delta \mathrm{u}(\mu \mathrm{m})$	0.0	-11.5	21.3	0.672	$\Delta \mathrm{u}(\mu \mathrm{m})$	0.0	-11.4	6.49	0.672	
$\Delta \mathrm{v}(\mu \mathrm{m})$	200	160.5	23.1	0.715	$\Delta \mathrm{v}(\mu \mathrm{m})$	200	163.8	7.03	0.714	
$\Delta \psi(\mathrm{mrad})$	0.0	-0.072	0.110	0.816	$\Delta \psi(\mathrm{mrad})$	0.0	-0.054	0.034	0.816	

Δv has a significant negative shift after increasing statistics.

BACKUP

Alignment (global) Parameters

FTT (sTGC)

- 6 alignment parameters per pentagon (16 pentagons).
- 6 per plane (4 planes).
- 6 for sTGC.
- 126 alignment parameters.

Single Pentagon Alignment

- Misalign 1 Pentagon (4) in sTGC simulated geometry. Located in $+x,+y$ quadrant on plane second closest to IP.
- Throw mu+ with particle gun with following settings:
- $0.2<\mathrm{p}_{\mathrm{T}}<2.0 \mathrm{GeV} / \mathrm{c}$
- $2.3<\eta<4.4$
- $0.0<\phi<1.83 \mathrm{rad}$
- $\mathrm{B}=0 \mathrm{~T}$
- Require hits on all sTGC and FST planes and pentagon module 4 ($\sim 450 \mathrm{k}$ tracks in our sample).
- Fit with GenFit Kalman filter and then refit with GenFit GBL.
- Output data to Mille.dat files. Mille.dat files are then fed to pede.
- Fix rotations about u-axis and v-axis, in addition to w translation all to 0.
- Matrix inversion used to solve for alignment parameters.

Testing Alignment

$\Delta \nu=2 \mathrm{mrad}$

Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	0.0	-21.4	21.2	0.671
$\Delta \mathrm{v}(\mu \mathrm{m})$	0.0	-22.9	23.0	0.714
$\Delta \psi(\mathrm{mrad})$	2.0	1.941	0.110	0.815

- Consistent within 2σ.
- I would like to increase the statistics again to see if this holds.
- For the rotation of $\Delta \gamma$ we rotate entire $2^{\text {nd }}$ sTGC plane to prevent geometry overlaps for the time being.
$\Delta u=200 \mu \mathrm{~m}$

Parameter	Input	Output	Error	Global Corr.
$\Delta u(\mu \mathrm{~m})$	200	185.1	21.3	0.673
$\Delta v(\mu \mathrm{~m})$	0.0	-31.9	23.0	0.714
$\Delta \nu(\mathrm{mrad})$	0.0	-0.042	0.110	0.817

$\Delta v=200 \mu \mathrm{~m}$

Parameter	Input	Output	Error	Global Corr.
$\Delta u(\mu \mathrm{~m})$	0.0	-11.5	21.3	0.672
$\Delta v(\mu \mathrm{~m})$	200	160.5	23.1	0.715
$\Delta \nu(\mathrm{mrad})$	0.0	-0.072	0.110	0.816

Testing Alignment Software

No Misalignment

Parameter	Input	Output	Error	Global Corr.
$\Delta \mathrm{u}(\mu \mathrm{m})$	0.0	-22.0	36.8	0.672
$\Delta \mathrm{v}(\mu \mathrm{m})$	0.0	-37.2	39.8	0.714
$\Delta \psi(\mathrm{mrad})$	0.0	0.0075	0.1899	0.816

$\Delta u=50 \mu \mathrm{~m}$

Parameter	Input	Output	Error	Global Corr.
$\Delta u(\mu \mathrm{~m})$	50	34.6	37.0	0.671
$\Delta v(\mu \mathrm{~m})$	0.0	-28.2	40.1	0.713
$\Delta \nu(\mathrm{mrad})$	0.0	-0.0161	0.192	0.816

Differences from FST

- We are testing a whole pentagon not just one inner or outer sensor with a similar number of tracks.
- Error is an order of magnitude higher for each parameter.
- Global correlation for Δu is larger.
- Global correlations for Δv and $\Delta \gamma$ are smaller, which we would expect.
$\Delta v=50 \mu \mathrm{~m}$

Parameter	Input	Output	Error	Global Corr.
$\Delta u(\mu \mathrm{~m})$	0.0	-13.6	36.7	0.672
$\Delta v(\mu \mathrm{~m})$	$50 \mu \mathrm{~m}$	37.2	39.8	0.714
$\Delta y(\mathrm{mrad})$	0.0	-0.0353	0.191	0.816

Millepede-II with GBL

- Track parameterized by $\boldsymbol{q}=\left(\boldsymbol{u}_{\boldsymbol{i}}, \ldots, \boldsymbol{u}_{\# \boldsymbol{p l a n e s}}\right)$, where $\boldsymbol{u}_{\boldsymbol{i}}$ vectors are offsets at FST or sTGC plane.
- Minimize the following function, where \mathbf{p} are the alignment parameters and $\mathbf{q}_{\mathbf{j}}$ are the track parameters.

$$
\chi^{2}(\mathbf{p}, \mathbf{q})=\sum_{j}^{\text {tracks }} \sum_{i}^{\text {measurements }}\left(\frac{m_{i j}-f_{i j}\left(\mathbf{p}, \mathbf{q}_{j}\right)}{\sigma_{i j}}\right)^{2}
$$

- Data necessary to run Millepede-II:
\# of local parameters
\# of global parameters
residuals $=m_{i j}-f_{i j}\left(\boldsymbol{p}, \boldsymbol{q}_{j}\right)$
$\sigma=$ standard deviation of the measurement
array: $\left(\frac{\partial f}{\partial q_{j}}\right)$
array: $\left(\frac{\partial f}{\partial p_{l}}\right)$
label array, l

Hierarchy of Alignment Parameters

- Each track prediction for a sensor relies on the larger structures it is contained within.
- Sensor on wedge, wedge on FST half, half on Full FST, full on TPC.
- We can calculate the all the global derivatives using chain rule

$$
\frac{\mathrm{d} f_{u / v}}{\mathrm{~d} \Delta \mathbf{p}_{l}}=\frac{\mathrm{d} \Delta \mathbf{p}_{s}}{\mathrm{~d} \Delta \mathbf{p}_{l}} \cdot \frac{\mathrm{~d} f_{u / v}}{\mathrm{~d} \Delta \mathbf{p}_{s}}, \quad \begin{aligned}
& f_{u / v}=\text { track prediction } \\
& \mathrm{d} \Delta \mathbf{p}_{\mathbf{s}}=\text { change in sensor global parameter } \\
& \mathrm{d} \Delta \mathbf{p}_{l}=\text { change in containing structure global } \\
& \text { parameter }
\end{aligned}
$$

- The sum of all sensors global parameters pertaining to a larger substructure are constrained to zero to prevent shift of overall structure by the sub-components.
- Constraints added by .txt file input to pede.

Multiple Scattering in GBL

- Multiple scattering covariance from the previous measurement plane accounted for at the current measurement plane in the GBL trajectory.
- The covariance matrix of scattering angle (w.r.t track direction) is calculated using:

$$
\begin{gathered}
\sigma_{\theta}=\frac{0.0136}{p} \sqrt{x / \chi_{0}}\left[1+0.038 \ln \left(x / \chi_{0}\right)\right] . \\
V_{k}=\left(\begin{array}{cc}
\sigma_{\theta}^{2} & 0 \\
0 & \sigma_{\theta}^{2}
\end{array}\right) .
\end{gathered}
$$

- Where x is track length within the sensor, χ_{0} is the radiation length of the material and p is the magnitude of momentum.
- Kalman filter can treat material as continuous, while GBL uses discrete scatters.

GENFIT2 Classes for GBL

GblPoint.h/cc: contains all data for 2D measurements (derivatives, residuals, covariance, etc.).
GbITrajectory.h/cc: holds all GbIPoints, can be fit or used directly for Mille output.
MilleBinary.h/cc: Organizes the data from GblTrajectory into the exact format required for pede.
GFGbI.h/cc: GBL fitter class implementing Mille binary file output and data collection. Originally written for BELLE II alignment.

StFwdGbl.h/cc: Adapted version of GFGbl for use with the Forward Tracker Alignment.

Single Sensor Alignment

- Mille.dat files are then fed to pede.
- Can specify initial values of alignment parameters and their pre-sigma (helps stabilize a poorly defined parameter).

Parameter		
label	initial_value	presigma
label	initial_value	presigma

Example of pede parameter entries.

- Fix rotations about u-axis and v-axis, in addition to w translation by setting pre-sigma < 0.0.
- Matrix inversion used to solve for alignment parameters.
- ~50k tracks used for each trial.

