Global Spin Alignment Update

Gavin Wilks
University of Illinois at Chicago
06/15/23

Reminder of last meeting

- We found that v 2 caused differences between input and output ρ_{00} in simulation.
- Effect is large in rapidity bins near the edge of the acceptance.
- Diyu noticed that $<\cos 2 \beta>$ was non-zero in simulation.
- This presentation includes studies that explore these two points.
- First, I will go over an error I found in my code.

ϕ-meson global spin alignment

- Self-subtraction of Kaon daughters from Event plane Q-vector was not working properly in previous results.
- Difference between $|\eta|$ cuts now.

- I just want to make the point that these results to agree with BES-I for the $|n|<$ 1.0 cut.

From Nature Paper analysis note

This contradicts our results, but I am unsure if this was updated to the acceptance correction with v2 included. (This was an issue in the original acceptance simulation) - I will repeat this with no v2 in acceptance correction.

ϕ-meson global spin alignment

- Self-subtraction of Kaon daughters from Event plane Q-vector was not working properly in previous results.
- Rapidity dependent η cut still has issue.

ϕ-meson global spin alignment

- Centrality dependent η cut still has issue. Blue smaller η cut points appear systematically larger by a small amount.

Before Fix

After Fix

η cut leads to lower yield in $\left|\cos \theta^{*}\right|=1$ and higher yield in $\left|\cos \theta^{*}\right|=0$

$$
-\hat{y}(\hat{L})
$$

v2 Studies

- These contributions cancel out if there is no v 2 .
- When v2 is present:
- Higher phi-meson yield along $+x$, meaning there is a lower yield in $\left|\cos \theta^{*}\right|=0$ and higher yield in $\left|\cos \theta^{*}\right|=1$.
- This means there would be a positive contribution to ρ_{00} from v2.

```
\eta cut leads to
lower yield in
|\operatorname{cos}\mp@subsup{0}{}{*}|=0 and
higher yield in
|\operatorname{cos}\mp@subsup{0}{}{*}|=1
```

Think of this as a slice in STAR z position near the edge of acceptance, where ϕ meson |rapidity| is large.

Standard correction method

- Take ratio of ϕ-meson yields as a function of $\cos \left(\boldsymbol{\theta}^{*}\right)$ after/before η cuts on daughter kaons for $\rho_{00}=1 / 3$ input.
- Fit ratio with a 4th order polynomial to extract acceptance parameters F and G.
- Fix these parameters and EP resolution in fit which extracts ρ_{00} from the $\cos \left(\theta^{* \prime}\right)$ distribution (EP Smeared).
- We use $\mathrm{pT}=1.5$ and $\mathrm{R}=0.4$ for the following studies.

No |n| cut, EP Resolution Corrected

Acceptance parameters are derived from distributions with the same v2 input.

$$
R=0.4
$$

EP Smearing

$\mathrm{l} \mid<1.0,0.8<\mathrm{y}<1$

No $|\eta|$ cut, EP Resolution Corrected
Acceptance parameters are derived from v2 $=0$.

With |n| cut, Acceptance + EP Resolution Corrected

Acceptance parameters are derived from distributions with the same v2 input.

$$
R=0.4
$$

EP Smearing

No EP Smearing

With $|\eta|$ cut, Acceptance + EP Resolution Corrected

Acceptance parameters are derived from v2 $=0$.

Summary

Acceptance parameters are derived from distributions with the same v2 input.

No $\|\eta\|$ cut	reco = input	With EP Smearing
With $\|\eta\|$ cut	reco = input	reco $=$ input
		Close agreement when $v 2=0$.

Acceptance parameters are derived from v2 $=0$.

No $\|\eta\|$ cut	reco = input	With EP Smearing
With $\|\eta\|$ cut	reco $!=$ input	reco = input
	Agreement when v2 $=0$.	reco != input
	reco - input increases when v2 increases.	reco - input increases when v2 increases.

Let's look at the $|\eta|$ cut dependence for a wide rapidity input with v2.

With |n| cut, Acceptance + EP Resolution Corrected

Acceptance parameters are derived from distributions with the same v2 input.

$$
R=0.4
$$

EP Smearing

With |n| cut, Acceptance + EP Resolution Corrected

Acceptance parameters are derived from distributions with the same v2 input.

$$
R=0.4
$$

EP Smearing

With |n| cut, Acceptance + EP Resolution Corrected

Acceptance parameters are derived from distributions with the same v2 input.

$$
R=0.4
$$

EP Smearing
No EP Smearing

With |n| cut, Acceptance + EP Resolution Corrected

Acceptance parameters are derived from distributions with the same v2 input.

$$
R=0.4
$$

EP Smearing

Let's look at some cases where we use the smeared $\cos \left(\theta^{* \prime}\right)$ acceptance ratio to correct the the smeared $\cos \left(\theta^{* \prime}\right)$ distributions.

These results use EP
Smearing and Corrections are derived from Smeared $\cos \left(\theta^{* \prime}\right)$

Acceptance Correction
from $\rho_{00}=1 / 3$

Effect of Event Plane Smearing on β angle

The following distributions are in the ϕ-meson rest frame. They represent the yield of ϕ-meson in 2D space for each of the input ρ_{00} values.

In reaction plane (Ψ) frame, the azimuthal angle (β) has a uniform distribution in xz-plane (circular).

$$
\rho_{00}=1 / 3
$$

$$
\rho_{00}>1 / 3
$$

Simple case $\left(\rho_{00}=1 / 3\right)$

$\left(\Psi^{\prime}\right)$ frame.
Assume
$\Delta=\pi / 6$

$\left(\rho_{00}<1 / 3\right)$

(Ψ^{\prime}) frame.

Assume
$\Delta=\pi / 6$

$\left(\rho_{00}<1 / 3\right)$

Rotating to the Ψ^{\prime} frame causes non-uniformity in the β^{\prime} angle.

$$
\begin{aligned}
\therefore & \langle\cos 2 \beta\rangle=0 \\
& \left\langle\cos 2 \beta^{\prime}\right\rangle>0
\end{aligned}
$$

The particle yield would be larger at $\beta^{\prime}=\{0, \pi\}$ than at $\beta^{\prime}=\{\pi / 2,3 \pi / 2\}$

We expect $\left\langle\cos 2 \beta^{\prime}\right\rangle>0$ since $\cos 2 \beta^{\prime}=1$ at $\beta^{\prime}=\{0, \pi\}$ and $\cos 2 \beta^{\prime}=-1$ at $\beta^{\prime}=\{\pi / 2,3 \pi / 2\}$.

The xz-plane and $x^{\prime} z^{\prime}$-plane projections are equivalent to $\cos \left(\theta^{*}\right)=0$ and $\cos \left(\theta^{* \prime}\right)=0$.

Conclusions from basic geometry examples at $\cos \left(\theta^{*}\right)=0$ and $\cos \left(\theta^{* \prime}\right)=0$:

$$
\begin{array}{ll}
\rho_{00}<\frac{1}{3}: & \langle\cos 2 \beta\rangle=0 \\
\rho_{00}=\frac{1}{3}: & \langle\cos 2 \beta\rangle=0 \\
\rho_{00}>\frac{1}{3}: & \langle\cos 2 \beta\rangle=0
\end{array}
$$

$$
\begin{array}{ll}
\rho_{00}<\frac{1}{3}: & \left\langle\cos 2 \beta^{\prime}\right\rangle<0 \\
\rho_{00}=\frac{1}{3}: & \left\langle\cos 2 \beta^{\prime}\right\rangle=0 \\
\rho_{00}>\frac{1}{3}: & \left\langle\cos 2 \beta^{\prime}\right\rangle>0
\end{array}
$$

Before Cut, $-1<y<1$

Before Cut, $-1<\mathbf{y}<1$

By similar arguments, we would also expect other relevant terms $\left\langle\cos \beta^{\prime}\right\rangle$ and $\left\langle\cos 4 \beta^{\prime}\right\rangle$ to be

$$
\begin{array}{ll}
\rho_{00}<\frac{1}{3}: & \left\langle\cos \beta^{\prime}\right\rangle=0 \\
\rho_{00}=\frac{1}{3}: & \left\langle\cos \beta^{\prime}\right\rangle=0 \\
\rho_{00}>\frac{1}{3}: & \left\langle\cos \beta^{\prime}\right\rangle=0
\end{array}
$$

zero.

$$
\begin{array}{ll}
\rho_{00}<\frac{1}{3}: & \left\langle\cos 4 \beta^{\prime}\right\rangle=0 \\
\rho_{00}=\frac{1}{3}: & \left\langle\cos 4 \beta^{\prime}\right\rangle=0 \\
\rho_{00}>\frac{1}{3}: & \left\langle\cos 4 \beta^{\prime}\right\rangle=0
\end{array}
$$

Before Cut, $-1<y<1$

Before Cut, $-1<y<1$

$\left|\cos \theta^{*}\right| \mid$
$\left|\cos \theta^{*}\right| \mid$

$\left(\rho_{00}=1 / 3\right)|n|$ cut effect

The particle yield would be larger at $\beta=\{0, \pi\}$ than at $\beta=\{\pi / 2,3 \pi / 2\}$

We expect $\langle\cos 2 \beta\rangle>0$ since $\cos 2 \beta=1$ at $\beta=\{0, \pi\}$ and $\cos 2 \beta=-1$ at $\beta=\{\pi / 2,3 \pi / 2\}$.

The smaller the $|\eta|$ cut, the larger $\langle\cos 2 \beta\rangle$ will become.

Naively, I would not expect $\langle\cos \beta\rangle$ or $\langle\cos 4 \beta\rangle$ to deviate from zero, since the $|\eta|$ cut effect is symmetric along z-axis.

$\left(\rho_{00}=1 / 3\right)|\eta|$ cut effect

We expect $\langle\cos \boldsymbol{\beta}\rangle=0$ just looking at the example on the left.

There is symmetry of yield across the $+z$ axis and a change of sign of $\cos \beta$ across this axis.

$\langle\cos 4 \beta\rangle$ is not as trivial.
Depending on the $|\eta|$ cut we could expect $\langle\cos 4 \beta\rangle$ to be + , -, or 0 .

- \#1, Certain $|\eta|$ acceptance can produce a case that is hard to distinguish if it will be positive or negative.

- \#2, Small $|\eta|$ acceptance can cause positive value.
- \#3, Wide $|\eta|$ acceptance can produce slightly negative.

Check with simulation

- We see an increase in $\langle\cos 2 \beta\rangle$ away from 0 when we introduce $|\eta|$ cuts.
- Smaller $|\eta|$ cut leads to larger deviation from 0.

$\left|\cos \theta^{*}\right|$

$\left|\cos \theta^{*}\right|$

Check with simulation

- $\langle\cos \beta\rangle$ is consistently 0 .

$\left|\cos \theta^{*}\right|$

$\left|\cos \theta^{*}\right|$

Check with simulation

- $\langle\cos 4 \beta\rangle$ deviates significantly from 0 at very small $|\eta|$ cut values.
- Sign change matches our expectation.

$\left|\cos \theta^{*}\right|$

$|\cos \theta *|$

Combined effect of acceptance and EP Resolution on $\left\langle\cos \beta^{\prime}\right\rangle$

- Naïve assumption: Effect on $\left\langle\cos \beta^{\prime}\right\rangle$ from EP smearing and cutting on $|\eta|$ will just be a sum of the deviation from zero from both effects.

Combined effect of acceptance and EP Resolution on $\left\langle\cos 2 \beta^{\prime}\right\rangle$

- Naïve assumption : Effect on $\left\langle\cos 2 \beta^{\prime}\right\rangle$ from EP smearing and cutting on $|\eta|$ will just be a sum of the deviation from zero from both effects.

Combined effect of acceptance and EP Resolution on $\left\langle\cos 4 \beta^{\prime}\right\rangle$

- Naïve assumption: Effect on $\left\langle\cos 4 \beta^{\prime}\right\rangle$ from EP smearing and cutting on $|\eta|$ will just be a sum of the deviation from zero from both effects.

Summary

- There was an issue in the self-subtraction of the Kaon daughters, which has been fixed.
- We have learned from these studies that we need to have a precise measurement of v2 to properly correct our data.
- I have been working on a rapidity and centrality dependent v2.
- I have produced the yield histograms, but I need to rewrite some macros.
- Non-zero <cos(2 β)> and <cos(4 1β > from EP smearing/ Acceptance Cuts.

BACKUP

Other correction method

- Take ratio of ϕ-meson yields as a function of $\boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\theta}^{* \prime}\right)$ after/before η cuts on daughter kaons for $\rho_{00}=1 / 3$ input.
- Fit ratio with a 4th order polynomial to extract acceptance parameters F and G .
- Fix these parameters and EP resolution in fit which extracts ρ_{00} from the $\cos \left(\theta^{* \prime}\right)$ distribution (EP Smeared).
- We use $\mathrm{pT}=1.5$ and $\mathrm{R}=0.4$ for the following studies.

Division Acceptance Method with RP

Division Acceptance Method with EP

Division Acceptance Method with RP

Division Acceptance Method with EP

