Global Spin Alignment Update

Gavin Wilks

University of Illinois at Chicago

06/15/23

Reminder of last meeting

- We found that v2 caused differences between input and output ρ_{00} in simulation.
 - Effect is large in rapidity bins near the edge of the acceptance.
- Divu noticed that $\langle \cos 2\beta \rangle$ was non-zero in simulation.
- This presentation includes studies that explore these two points.
- First, I will go over an error I found in my code.

φ-meson global spin alignment

- Self-subtraction of Kaon daughters from Event plane Q-vector was not working properly in previous results.
- Difference between $|\eta|$ cuts now.

3

I just want to make the point that these results to agree with BES-I for the |η| < 1.0 cut.

This contradicts our results, but I am unsure if this was updated to the acceptance correction with v2 included. (This was an issue in the original acceptance simulation) - I will repeat this with no v2 in acceptance correction.

```
sigma from 1/3 = 5.30
```

```
sigma from BES-I = 1.065492
```

φ-meson global spin alignment

- Self-subtraction of Kaon daughters from Event plane Q-vector was not working properly in previous results.
- Rapidity dependent η cut still has issue.

φ-meson global spin alignment

 Centrality dependent η cut still has issue. Blue smaller η cut points appear systematically larger by a small amount.
 After Fix

 η cut leads to lower yield in $|\cos\theta^*| = 1$ and higher yield in $|\cos\theta^*| = 0$

 $-\hat{y}(\hat{L})$

v2 Studies

- These contributions cancel out if there is no v2.
- When v2 is present:
 - Higher phi-meson yield along +x, meaning there is a lower yield in |cosθ*| = 0 and higher yield in |cosθ*| = 1.
 - This means there would be a positive contribution to ρ_{00} from v2.

 $+\hat{x}(\Psi)$ low \downarrow low

η cut leads to lower yield in $|cosθ^*| = 0$ and higher yield in $|cosθ^*| = 1$

Think of this as a slice in STAR z position near the edge of acceptance, where φmeson |rapidity| is large.

Standard correction method

- Take ratio of ϕ -meson yields as a function of **cos(\theta*)** after/before η cuts on daughter kaons for $\rho_{00}=1/3$ input.
- Fit ratio with a 4th order polynomial to extract acceptance parameters F and G.
- Fix these parameters and EP resolution in fit which extracts ρ_{00} from the cos($\theta^{*'}$) distribution (EP Smeared).

• We use pT = 1.5 and R = 0.4 for the following studies.

No $|\eta|$ cut, EP Resolution Corrected

Acceptance parameters are derived from distributions with the same v2 input.

No $|\eta|$ cut, EP Resolution Corrected

Acceptance parameters are derived from distributions with the same v2 input.

Summary

Acceptance parameters are derived from distributions with the **same** v2 input.

	No EP Smearing	With EP Smearing
No η cut	reco = input	reco = input
With ŋ cut	reco = input	reco != input Close agreement when v2 = 0. reco – input decreases when v2 increases .

Acceptance parameters are derived from $v^2 = 0$.

	No EP Smearing	With EP Smearing
No η cut	reco = input	reco = input
With ໗ cut	reco != input Agreement when v2 = 0. reco – input increases when v2 increases.	reco != input Close agreement when v2 = 0. reco – input increases when v2 increases .

13

Let's look at the $|\eta|$ cut dependence for a wide rapidity input with v2.

Acceptance parameters are derived from distributions with the same v2 input.

R = 0.4

ml<1.0, -1.5<y<1.5 hl<1.0, -1.5<y<1.5 0.05 0.05 Preco_pinput 00 _b 00 50 Preco_pinput 00 _b 00 50 $\rho_{00}^{input} = 0.2500$ $\rho_{00}^{input} = 0.2500$ -0.1-0.1 $\rho^{\text{input}} = 0.3333$ $\rho^{\text{input}} = 0.3333$ + $\rho_{00}^{input} = 0.4000$ + $\rho_{00}^{\text{input}} = 0.4000$ -0.15 -0.15 0.1 0.2 0.1 0.2 v₂^{input} v₂^{input}

EP Smearing

No EP Smearing

Acceptance parameters are derived from distributions with the same v2 input.

Acceptance parameters are derived from distributions with the same v2 input.

R = 0.4

EP Smearing

No EP Smearing

Acceptance parameters are derived from distributions with the same v2 input.

R = 0.4

EP Smearing

No EP Smearing

18

Let's look at some cases where we use the smeared $cos(\theta^{*'})$ acceptance ratio to correct the the smeared $cos(\theta^{*'})$ distributions.

Effect of Event Plane Smearing on β angle

The following distributions are in the ϕ -meson rest frame. They represent the yield of ϕ -meson in 2D space for each of the input ρ_{00} values.

In reaction plane (Ψ) frame, the azimuthal angle (β) has a uniform distribution in xz-plane (circular).

Simple case ($\rho_{00} = 1/3$)

Rotating to the Ψ' frame does not cause non-uniformity in the β' angle.

$$\therefore \langle \cos 2\beta \rangle = \langle \cos 2\beta' \rangle = 0$$

The xz-plane and x'z'-plane projections are equivalent to $cos(\theta^*) = 0$ and $cos(\theta^{*'}) = 0$.

 $(\rho_{00} < 1/3)$

Rotating to the Ψ' frame causes non-uniformity in the β' angle.

 $\begin{array}{l} \therefore \left< \cos 2\beta \right> = 0 \\ \left< \cos 2\beta' \right> < 0 \end{array}$

The particle yield would be smaller at $\beta' = \{0, \pi\}$ than at $\beta' = \{\pi/2, 3\pi/2\}$

We expect $\langle \cos 2\beta' \rangle < 0$ since $\cos 2\beta' = 1$ at $\beta' = \{0,\pi\}$ and $\cos 2\beta' = -1$ at $\beta' = \{\pi/2, 3\pi/2\}$.

The xz-plane and x'z'-plane projections are equivalent to $cos(\theta^*) = 0$ and $cos(\theta^{*'}) = 0$.

Rotating to the Ψ' frame causes non-uniformity in the β' angle.

 $\begin{array}{l} \therefore \left< \cos 2\beta \right> = 0 \\ \left< \cos 2\beta' \right> > 0 \end{array}$

The particle yield would be **larger** at $\beta' = \{0, \pi\}$ than at $\beta' = \{\pi/2, 3\pi/2\}$

We expect $\langle \cos 2\beta' \rangle > 0$ since $\cos 2\beta' = 1$ at $\beta' = \{0,\pi\}$ and $\cos 2\beta' = -1$ at $\beta' = \{\pi/2, 3\pi/2\}$.

The xz-plane and x'z'-plane projections are equivalent to $cos(\theta^*) = 0$ and $cos(\theta^{*'}) = 0$. Conclusions from basic geometry examples at $cos(\theta^*) = 0$ and $cos(\theta^{*'}) = 0$:

$$\rho_{00} < \frac{1}{3}: \langle \cos 2\beta \rangle = 0$$

$$\rho_{00} = \frac{1}{3}: \langle \cos 2\beta \rangle = 0$$

$$\rho_{00} > \frac{1}{3}: \langle \cos 2\beta \rangle = 0$$

$$\rho_{00} < \frac{1}{3}: \quad \langle \cos 2\beta' \rangle < 0$$

$$\rho_{00} = \frac{1}{3}: \quad \langle \cos 2\beta' \rangle = 0$$

$$\rho_{00} > \frac{1}{3}: \quad \langle \cos 2\beta' \rangle > 0$$

25

By similar arguments, we would also expect other relevant terms $\langle \cos \beta' \rangle$ and $\langle \cos 4\beta' \rangle$ to be

zero.

$$\rho_{00} < \frac{1}{3}: \quad \langle \cos \beta' \rangle = 0$$

$$\rho_{00} = \frac{1}{3}: \quad \langle \cos \beta' \rangle = 0$$

$$\rho_{00} > \frac{1}{3}: \quad \langle \cos \beta' \rangle = 0$$

$$\rho_{00} < \frac{1}{3}: \quad \langle \cos 4\beta' \rangle = 0$$

$$\rho_{00} = \frac{1}{3}: \quad \langle \cos 4\beta' \rangle = 0$$

$$\rho_{00} > \frac{1}{3}: \quad \langle \cos 4\beta' \rangle = 0$$

$(\rho_{00} = 1/3) |\eta|$ cut effect

The particle yield would be **larger** at $\beta = \{0, \pi\}$ than at $\beta = \{\pi/2, 3\pi/2\}$

We expect $\langle \cos 2\beta \rangle > 0$ since $\cos 2\beta = 1$ at $\beta = \{0,\pi\}$ and $\cos 2\beta = -1$ at $\beta = \{\pi/2, 3\pi/2\}$.

The smaller the $|\eta|$ cut, the larger $\langle \cos 2\beta \rangle$ will become.

Naively, I would not expect $\langle \cos \beta \rangle$ or $\langle \cos 4\beta \rangle$ to deviate from zero, since the $|\eta|$ cut effect is symmetric along z-axis.

$(\rho_{00} = 1/3) |\eta|$ cut effect

We expect $\langle \cos \beta \rangle = 0$ just looking at the example on the left.

There is symmetry of yield across the +z axis and a change of sign of $\cos\beta$ across this axis.

$\langle \cos 4m eta angle$ is not as trivial.

Depending on the $|\eta|$ cut we could expect $\langle \cos 4\beta \rangle$ to be +, -, or 0.

- #1, Certain |η| acceptance can produce a case that is hard to distinguish if it will be positive or negative.
- #2, Small $|\eta|$ acceptance can cause positive value.
- #3, Wide |η| acceptance can produce slightly negative.

Check with simulation

- We see an increase in $\langle \cos 2\beta \rangle$ away from 0 when we introduce $|\eta|$ cuts.
- Smaller $|\eta|$ cut leads to larger deviation from 0.

Check with simulation

• $\langle \cos \beta \rangle$ is consistently 0.

Check with simulation

- $\langle \cos 4\beta \rangle$ deviates significantly from 0 at very small $|\eta|$ cut values.
- Sign change matches our expectation.

Combined effect of acceptance and EP Resolution on $\langle \cos \beta' \rangle$

 Naïve assumption: Effect on (cos β') from EP smearing and cutting on |η| will just be a sum of the deviation from zero from both effects.

Effect from these two sources was zero to begin with, so naïve assumption holds.

Combined effect of acceptance and EP Resolution on $\langle \cos 2\beta' \rangle$

 Naïve assumption : Effect on (cos 2β') from EP smearing and cutting on |η| will just be a sum of the deviation from zero from both effects.

Simulation shows that this is assumption isn't too far off.

Combined effect of acceptance and EP Resolution on $\langle \cos 4\beta' \rangle$

 Naïve assumption: Effect on (cos 4β') from EP smearing and cutting on |η| will just be a sum of the deviation from zero from both effects.

Simulation shows that this assumption isn't too far off.

Summary

- There was an issue in the self-subtraction of the Kaon daughters, which has been fixed.
- We have learned from these studies that we need to have a precise measurement of v2 to properly correct our data.
 - I have been working on a rapidity and centrality dependent v2.
 - I have produced the yield histograms, but I need to rewrite some macros.
- Non-zero <cos(2β)> and <cos(4β)> from EP smearing/ Acceptance Cuts.

BACKUP

Other correction method

- Take ratio of ϕ -meson yields as a function of **cos(\theta^{*'})** after/before η cuts on daughter kaons for $\rho_{00}=1/3$ input.
- Fit ratio with a 4th order polynomial to extract acceptance parameters F and G.
- Fix these parameters and EP resolution in fit which extracts ρ_{00} from the cos($\theta^{*'}$) distribution (EP Smeared).

• We use pT = 1.5 and R = 0.4 for the following studies.

