# $\phi$-meson Global Spin Alignment Update 

Gavin Wilks (gwilks3@uic.edu)
University of Illinois at Chicago
08/03/2023

## pT Dependence (20-60\% Centrality)



## pT Dependence (20-60\% Centrality)





## Centrality Dependence <br> $1<\mathrm{pT}<5 \mathrm{GeV} / \mathrm{c}$





## Rapidity Dependence (0-80\% Centrality)

## $1<\mathrm{pT}<5 \mathrm{GeV} / \mathrm{c}$



## Au+Au $14.6 \mathrm{GeV} p_{T}$ spectra interpolation

$$
\begin{aligned}
\frac{1}{2 \pi m_{T}} \frac{d^{2} N}{d m_{T} d y}= & \frac{d N / d y(n-1)(n-2)}{2 \pi n T_{\mathrm{Levy}}\left(n T_{\mathrm{Levy}}+m_{0}(n-2)\right)} \\
& \times\left(1+\frac{m_{T}-m_{0}}{n T_{\mathrm{Levy}}}\right)^{-n}
\end{aligned}
$$

- Using Lévy function for interpolation is difficult due to parameter $n$ varying too much energy to energy.
- Function used for sampling pT in 19.6 GeV simulations.

Centrality 5

$\frac{1}{2 \pi m_{T}} \frac{d^{2} N}{d m_{T} d y}=\frac{d N / d y}{2 \pi T_{\exp }\left(m_{0}+T_{\exp }\right)} e^{-\left(m_{T}-m_{0}\right) / T_{\mathrm{exp}}}$,

- In exponential function we have two well behaved parameters ( $\mathrm{dN} / \mathrm{dy}$ ) and $\mathrm{T}_{\text {exp }}$
- This will be used for extrapolation.
- Fit the distributions of the two parameters as a function of collision energy.
- We really only need $T_{\text {exp }}$ since $d N / d y$ is just a normalization and we just want the shape.
- Then we can just grab the interpolated parameters for 14.6 GeV and generate the spectra for simulation.


## Au+Au $14.6 \mathrm{GeV} p_{T}$ spectra interpolation

10-20\% centrality




- Use second order polynomial to fit both parameters.
- Fits to parameters are well behaved.
- Performed for each centrality.


### 14.6 GeV 1st Order Raw Results



Rapidity Dependent Study Pending

## Summary and Outlook

19.6 GeV

- First order EP results appear systematically lower than second order EP results.
14.6 GeV
- Correction Simulations:
- Working on ToF Matching fits.
- Add code for interpolated pT spectra in simulation.
- I will start running the simulation tomorrow.

