Summary on April 7, 2023 - nonzero <cos2beta> in a small eta cut

Diyu Shen

R=1

This plot is obtained by using reaction plane, i.e. resolution = 1.

R=1

R=0.6

For finite event plane resolution, observed ρ_{00} is "rotated", but still can be corrected to the input.

Dependence of the extracted F on the ρ_{00} and resolution:

$$g(\theta^*, \beta) = 1 + F^* \cos^2 \theta$$
$$\propto 1 + F \cos^2 \theta^* + F \sin^2 \theta^* \cos 2\beta, \quad (23)$$

As eq. 23 is an approximation of acceptance effect, and it is obtained by fitting $\cos(\theta^*)$ distribution with $\propto 1 + F\cos^2\theta^*$ which requires $\langle\cos 2\beta\rangle = 0$. It is not perfect so that F may have few percentage variation, but this has negligible effect on ρ_{00} .

In oder to illustrate the effect, we simulated few cases:

1.
$$|\eta| < 1$$
, resolution = 1.0, input $\rho_{00} = 0.25$
2. $|\eta| < 1$, resolution = 1.0, input $\rho_{00} = 0.33$
3. $|\eta| < 1$, resolution = 1.0, input $\rho_{00} = 0.40$
4. $|\eta| < 1$, resolution = 0.6, input $\rho_{00} = 0.25$
5. $|\eta| < 1$, resolution = 0.6, input $\rho_{00} = 0.33$
6. $|\eta| < 1$, resolution = 0.6, input $\rho_{00} = 0.40$
7. $|\eta| < 1$, resolution = 0.1, input $\rho_{00} = 0.25$
8. $|\eta| < 1$, resolution = 0.1, input $\rho_{00} = 0.33$
9. $|\eta| < 1$, resolution = 0.1, input $\rho_{00} = 0.40$

We use F obtained from $|\eta| < 1$, resolution = 1.0 (reaction plane), input ρ_{00} = 1/3 to correct all those cases.

Subtleties in coding:

There are two versions of the code, one is fitting $\cos \theta^*$ histogram after eta cut directly with $\propto 1 + F \cos^2 \theta^*$ function. In this version, the $\cos \theta^*$ histogram is obtained before the spin alignment sampling introduced.

It is important to have this distribution to be a constant, so that g function is reflected by $\cos \theta^*$ histogram after cut

$$\begin{bmatrix} \frac{dN}{d\cos\theta^*d\beta} \end{bmatrix}_{|\eta|} = \underbrace{\frac{dN}{d\cos\theta^*d\beta}} \times g(\theta^*,\beta). \quad (22)$$

Constant means $\rho_{00} = 1/3$

Another method fills $\cos \theta^*$ histogram after the spin alignment sampling, in this case one has to take the ratio of $\cos \theta^*$ histogram of before and after eta cut, then fits with $\propto 1 + F \cos^2 \theta^*$

if(!Sampling(f_rhoPhy,CosThetaStarRP)) return; h_theta_star_before->Fill(TMath::Abs(CosThetaStarEP));

double eta_gap = 0.8; double pt_gap = 0.2; if(TMath::Abs(PiplusEta)<=eta_gap && TMath::Abs(PiminusEta)<=eta_gap) h_theta_star->Fill(TMath::Abs(CosThetaStarEP)); return;

$$\frac{\left[\frac{dN}{d\cos\theta^*d\beta}\right]_{|\eta|}}{\frac{dN}{d\cos\theta^*d\beta}} = \frac{\sqrt{N}}{d\cos\theta^*d\beta} \times g(\theta^*,\beta).$$
(22)

h_theta_star->Divide(h_theta_star_before);

$$g(\theta^*, \beta) = 1 + F^* \cos^2 \theta$$
$$\propto 1 + F \cos^2 \theta^* + F \sin^2 \theta^* \cos 2\beta, \quad (23)$$

what has been used in the code: $1 + F \cos^2 \theta^*$, based on naive expectation $\int \cos 2\beta d\beta = 0$

But this is only true for perfect acceptance, for finite acceptance " v_2 " != 0

 $|\eta| < 1$

cos2beta: 0.0273808 +/- 0.00243961

h_theta_star

cos2beta: 0.0721493 +/- 0.00313708

h_theta_star

cos2beta: 0.251166 +/- 0.00508128

h_theta_star