Summary on April 7, 2023 - nonzero <cos2beta> in a small eta cut

Diyu Shen

This plot is obtained by using reaction plane, i.e. resolution $=1$.

$\mathrm{R}=1$

$R=0.6$

For finite event plane resolution, observed ρ_{00} is "rotated", but still can be corrected to the input.

Dependence of the extracted F on the ρ_{00} and resolution:

$$
\begin{align*}
g\left(\theta^{*}, \beta\right) & =1+F^{*} \cos ^{2} \theta \\
& \propto 1+F \cos ^{2} \theta^{*}+F \sin ^{2} \theta^{*} \cos 2 \beta \tag{23}
\end{align*}
$$

As eq. 23 is an approximation of acceptance effect, and it is obtained by fitting $\cos \left(\theta^{*}\right)$ distribution with $\alpha 1+F \cos ^{2} \theta *$ which requires $\langle\cos 2 \beta\rangle=0$. It is not perfect so that F may have few percentage variation, but this has negligible effect on ρ_{00}.
In oder to illustrate the effect, we simulated few cases:

1. $|\eta|<1$, resolution $=1.0$, input $\rho_{00}=0.25$
2. $|\eta|<1$, resolution $=1.0$, input $\rho_{00}=0.33$
3. $|\eta|<1$, resolution $=1.0$, input $\rho_{00}=\mathbf{0 . 4 0}$
4. $|\eta|<1$, resolution $=0.6$, input $\rho_{00}=0.25$
5. $|\eta|<1$, resolution $=0.6$, input $\rho_{00}=0.33$
6. $|\eta|<1$, resolution $=0.6$, input $\rho_{00}=0.40$
7. $|\eta|<1$, resolution $=0.1$, input $\rho_{00}=0.25$
8. $|\eta|<1$, resolution $=0.1$, input $\rho_{00}=0.33$
9. $|\eta|<1$, resolution $=0.1$, input $\rho_{00}=0.40$

We use F obtained from $|\eta|<1$, resolution $=1.0$ (reaction plane), input $\rho_{00}=1 / 3$ to correct all those cases.

Subtleties in coding:

There are two versions of the code, one is fitting $\cos \theta^{*}$ histogram after eta cut directly with $\propto 1+F \cos ^{2} \theta^{*}$ function. In this version, the $\cos \theta^{*}$ histogram is obtained before the spin alignment sampling introduced.

```
if(TMath::Abs(KplusEta)<=eta_gap && TMath::Abs(KminusEta)<=eta_gap){
    h_theta->Fill(TMath::Abs(CosThetaStarZP));
    h_theta_star->Fill(TMath::Abs(CosThetaStarSP));
    CosBeta->FılL(0.5,cos(2.*beta));
}
if(!Sampling(f_rhoPhy,CosThetaStarRP)) return;
if(TMath::Abs(KplusEta)<=eta_gap && TMath::Abs(KminusEta)<=eta_gap){
    h_eta->Fill(TMath::Abs(CosThetaStarSP));
}
return;
```

It is important to have this distribution to be a constant, so that \mathbf{g} function is reflected by $\cos \theta^{*}$ histogram atter cut

$$
\begin{equation*}
\left[\frac{d \mathrm{~N}}{d \cos \theta^{*} d \beta}\right]_{|\eta|}=\frac{d \mathrm{~N}}{d \cos \theta^{*} d \beta} \times g\left(\theta^{*}, \beta\right) \tag{22}
\end{equation*}
$$

Constant means $\rho_{00}=1 / 3$

Another method fills $\cos \theta^{*}$ histogram after the spin alignment sampling, in this case one has to take the ratio of $\cos \theta^{*}$ histogram of before and after eta cut, then fits with $\propto 1+F \cos ^{2} \theta^{*}$

```
if(!Sampling(f_rhoPhy,CosThetaStarRP)) return;
h_theta_star_before->Fill(TMath::Abs(CosThetaStarEP));
double eta_gap = 0.8;
double pt_gap = 0.2;
if(TMath::Abs(PiplusEta)<=eta_gap && TMath::Abs(PiminusEta)<=eta_gap) h_theta_Star->Fill(TMath::Abs(CosThetaStarEP));
return;
```

$$
\frac{\left[\frac{d \mathrm{~N}}{d \cos \theta^{*} d \beta}\right]_{|\eta|}}{\frac{d \mathrm{~N}}{d \cos \theta^{*} d \beta}}=\frac{\searrow \mathrm{N}}{d \cos \theta \theta^{*} d \beta} \times g\left(\theta^{*}, \beta\right)
$$

$g\left(\theta^{*}, \beta\right)=1+F^{*} \cos ^{2} \theta$

$$
\begin{equation*}
\propto 1+F \cos ^{2} \theta^{*}+F \sin ^{2} \theta^{*} \cos 2 \beta \tag{23}
\end{equation*}
$$

what has been used in the code: $1+F \cos ^{2} \theta^{*}$, based on naive expectation $\int \cos 2 \beta d \beta=0$
h_theta_star->Fit(Func_A, "ER");
TF1 *Func_A = new TF1("Func_A","[0]*(1.+[1]*(x*x))", 0,1$)$;

But this is only true for perfect acceptance, for finite acceptance " v_{2} " !=0

h_theta_star

cos2beta: $0.0721493+/-0.00313708$

$|\eta|<0.2$
cos2beta: $0.251166+/-0.00508128$

