ϕ-meson ρ_{00} acceptance QA

Gavin Wilks
University of Illinois at Chicago
04/20/2023

Motivation for this study

- We performed the rapidity and centrality dependent studies with various $|\eta|$ cuts.
- Artificial increase in ρ_{00} after all corrections as $|\eta|$ cut decreases.
- Perhaps v_{2} is the cause of these inconsistent results.
- v_{2} for charged particles has been measured as a function of η and it decreases as $|\eta|$ increases.
- Could the ϕ-meson v_{2} depend more heavily on η ? We are using $|\eta|<1$ input v_{2} for all $|\eta|$ cuts.

Acceptance + Resolution Method

- Assume RP = 0 rad
- Generate ϕ-meson input p_{T} with known spectra.
- All ϕ-meson rapidity inputs are sampled from a uniform distribution.
- v_{2} can be turned on or off.
- On: use known $\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ distribution and randomly sample $\varphi-\Psi_{2}$ generated with the v_{2} at a specific p_{T}.
- Off: ϕ-meson φ angle is randomly sampled from uniform distribution.
- Cut on $\cos \left(\theta^{*}\right)$ w.r.t. RP using input ρ_{00}.
- Shapes $\cos \left(\theta^{*}\right)$ distribution to the corresponding ρ_{00}.
- Using input $2^{\text {nd }}$ order EP Resolution R_{2} find χ from distribution:

$$
R_{2}=\frac{1}{2} \sqrt{\frac{\pi}{2}} \chi e^{-\frac{\chi^{2}}{4}}\left[I_{0}\left(\frac{\chi^{2}}{4}\right)+I_{1}\left(\frac{\chi^{2}}{4}\right)\right]
$$

Acceptance + Resolution Method

- Using χ generate Δ to simulate R_{2} :

$$
\begin{aligned}
& P(\Delta) \\
& =\frac{1}{2 \pi}\left[e^{\frac{-\chi^{2}}{2}}+\sqrt{\frac{\pi}{2}} \chi \cos (2 \Delta) e^{\frac{-\chi^{2}}{2} \sin ^{2}(2 \Delta)}\left(1+\operatorname{erf}\left(\frac{\chi}{\sqrt{2}} \cos (2 \Delta)\right)\right)\right]
\end{aligned}
$$

- Now we can calculate $\cos \left(\theta^{* \prime}\right)$ w.r.t. EP using (primed frame):

$$
\begin{equation*}
\Psi_{2}^{\prime}=\Psi_{2}+\Delta \tag{Eq. 3}
\end{equation*}
$$

- We cut on $|\eta|$ of the Kaon daughters we therefore have two yield vs. $\cos \left(\theta^{*}\right)$ histograms: before $|n|$ cut and after $|\eta|$ cut.
- We divide: (after $|\eta|$ cut) / (before $|\eta|$ cut)
- For the $\rho_{00}=0.33$ case for each study. We fit this ratio histogram for the reaction plane $\cos \left(\theta^{*}\right)$ using a $4^{\text {th }}$ order function (slide 11, Eqn. 4), which provides us with F^{*} and G^{*}.

Acceptance + Resolution Method

- To reconstruct ρ_{00} for various input ρ_{00}, we fit the yield vs $\cos \left(\theta^{* \prime}\right)$ after $|\eta|$ cut.
- The inputs to this fit are F^{*}, G^{*} and the EP Resolution, which are fixed in the fitting function found on slide 12, Eqns. 5-8.
- This function is consistent with the function from PHYSICAL REVIEW C 98, 044907 (2018) if we assume the $\mathrm{G}^{*}=0$ (the 4th order fit coefficient). See slide 13.

Now we will show results from these simulations with various input $\rho_{00}=\{0.25,0.33,0.40\}$.

v_{2} OFF

$$
\begin{gathered}
1.2<p_{T}<1.8 \\
-1<y<1 \\
|\eta|<0.4
\end{gathered}
$$

$$
\begin{gathered}
v_{2} \mathrm{ON} \\
1.2<p_{T}<1.8 \\
-1<y<1 \\
|\eta|<0.4
\end{gathered}
$$

v_{2} OFF

$1.2<p_{T}<1.8$

$$
\begin{gathered}
0.2<y<0.4 \\
|\eta|<0.4
\end{gathered}
$$

$$
\begin{gathered}
v_{2} \mathrm{ON} \\
1.2<\mathrm{p}_{\mathrm{T}}<1.8 \\
0.2<\mathrm{y}<0.4 \\
|\eta|<0.4
\end{gathered}
$$

ρ_{00} reco $-\rho_{00}$ input

Summary and Next Steps (04/13/2023)

- We found that including v_{2} in the acceptance + Resolution simulation causes the reconstructed ρ_{00} to differ from the input ρ_{00}.
- Larger effect when dealing with individual rapidity bins.
- Reconstructed ρ_{00} is always lower than input.
- We should see what happens when we vary $|\eta|$ cut for the same input kinematics with and without v_{2}.
- Try scaling v_{2} for smaller $|\eta|$ cut to generate $\cos \left(\theta^{* \prime}\right)$ distribution, but use the F^{*} and G^{*} from $|\eta|<1$. See if this explains the trend we see for rapidity dependence on slide 2.
- Possible solution: calculate v_{2} vs p_{T} ourselves for different $|\eta|$ cuts and these distributions in the simulation.
$\cdot-1<y<1$
- v2 on
- $1.2<\mathrm{pT}<1.8 \mathrm{GeV} / \mathrm{c}$

- $0.2<y<0.4$
- v2 on
- $1.2<\mathrm{pT}<1.8 \mathrm{GeV} / \mathrm{c}$

- Rapidity bins near edge of acceptance in pseudorapidity
- v2 off
- 1.2 < pT < $1.8 \mathrm{GeV} / \mathrm{c}$

- Rapidity bins near edge of acceptance in pseudorapidity
- v2 on
- 1.2 < pT < $1.8 \mathrm{GeV} / \mathrm{c}$

- Rapidity bins near edge of acceptance in pseudorapidity
- v2 on (with and without scaling)
- 1.2 < pT < $1.8 \mathrm{GeV} / \mathrm{c}$
- All acceptance parameters from v2 without scaling and $\rho 00=0.33$

Summary (04/20/2023)

- $-1<y<1$: v2 leads to small difference between input and reco
- $0.2<y<0.4$: v2 leads to noticeable negative difference between input and reco
- Specifically, for $|\eta|$ cuts that significantly effect acceptance.
- Opposite of expectation since we see a decrease in reco ρ_{00} rather than an increase which we see in the data.
- Edge of acceptance rapidity bins:
- v2 off: small difference
- v2 on: large difference
- v2 scaling effect:
- for $0.2<\mathrm{y}<0.4$ and $|\mathrm{n}|<0.4$ the v2 scaling did not change the results.
- Try other cases for these rapidity bins near edge of acceptance.
- If difference is negligible, then this does not explain the increase we see in data.

Outlook

- Try other cases of v2 scaling.
- Why does v2 cause differences and how to address?

Backup

p_{T} dependent study ($1.2<\mathrm{p}_{\mathrm{T}}<4.2,20-60 \%$) binned in pT

$\|\eta\|$ cut	integrated ρ_{00}	stat. error
$\|\eta\|<0.4$	0.3424	0.0055
$\|\eta\|<0.6$	0.3416	0.0041
$\|\eta\|<0.8$	0.3427	0.0035
$\|\eta\|<1.0$	0.3461	0.0020

p_{T} dependent study (1.2 $\left.<\mathrm{p}_{\mathrm{T}}<4.2,20-60 \%\right)$ binned in pT and rapidity

$\|\eta\|$ cut	integrated ρ_{00}	stat. error
$\|\eta\|<0.6$	0.3457	0.0041
$\|\eta\|<1.0$	0.3522	0.0024

centrality dependent study ($1.0<\mathrm{p}_{\mathrm{T}}<5.0,20-60 \%$) binned in centrality and pT

$\|\eta\|$ cut	integrated ρ_{00}	stat. error
$\|\eta\|<0.4$	0.3613	0.0046
$\|\eta\|<0.6$	0.3466	0.0034
$\|\eta\|<0.8$	0.3442	0.0029
$\|\eta\|<1.0$	0.3496	0.0018

centrality dependent study $\left(1.0<p_{T}<5.0,0-80 \%\right)$ binned in centrality and pT

$\|\eta\|$ cut	integrated ρ_{00}	stat. error
$\|\eta\|<0.4$	0.3632	0.0045
$\|\eta\|<0.6$	0.3416	0.0032
$\|\eta\|<0.8$	0.3378	0.0027
$\|\eta\|<1.0$	0.3456	0.0017

rapidity dependent study $\left(1.0<p_{T}<5.0,0-80 \%\right)$ binned in rapidity, centrality and pT

$\|\eta\|$ cut	integrated ρ_{00}	stat. error
$\|\eta\|<0.4$	0.3662	0.0038
$\|\eta\|<0.6$	0.3489	0.0027
$\|\eta\|<0.8$	0.3453	0.0023
$\|\eta\|<1.0$	0.3504	0.0015

Deriving $4^{\text {th }}$ Order Acceptance Correction

$$
\begin{aligned}
& {\left[\frac{d N}{d \cos \theta^{*} d \beta}\right]_{|\eta|}=\frac{d N}{d \cos \theta^{*} d \beta} \times g\left(\theta^{*}, \beta\right) \text {. }} \\
& g\left(\theta^{*}, \beta\right)=1+F^{*} \cos ^{2} \theta+G^{*} \cos ^{4} \theta \\
& =1+\left(\frac{4 F^{*}+3 G^{*}}{8}\right)-\left(\frac{2 F^{*}+3 G^{*}}{4}\right) \cos ^{2} \theta^{*}+\frac{3 G^{*}}{8} \cos ^{4} \theta^{*} \\
& -\frac{\cos 2 \beta}{2}\left[F^{*}\left(1-\cos ^{2} \theta^{*}\right)+G^{*}\left(1-\cos ^{2} \theta^{*}+\cos ^{4} \theta^{*}\right)\right] \\
& +\frac{G^{*} \cos 4 \beta}{8}\left[1-\cos ^{2} \theta^{*}+\cos ^{4} \theta^{*}\right], \\
& \int_{0}^{2 \pi} d \beta g\left(\theta^{*}, \beta\right)=g\left(\theta^{*}\right) \propto 1+\left(\frac{4 F^{*}+3 G^{*}}{8}\right)-\left(\frac{2 F^{*}+3 G^{*}}{4}\right) \cos ^{2} \theta^{*}+\frac{3 G^{*}}{8} \cos ^{4} \theta^{*} . \quad \text { Eq. } 4
\end{aligned}
$$

Deriving $4^{\text {th }}$ Order Acceptance Correction

$$
\begin{aligned}
& \frac{d N}{d \cos \theta^{* \prime} d \beta^{\prime}} \propto 1+A^{\prime} \cos ^{2} \theta^{* \prime}+B^{\prime} \sin ^{2} \theta^{* \prime} \cos 2 \beta^{\prime}+C^{\prime} \sin 2 \theta^{* \prime} \cos \beta^{\prime} \\
& \begin{aligned}
{\left[\frac{d N}{d \cos \theta^{* \prime}}\right]_{|\eta|} \propto 2+} & F^{*}-\frac{B^{\prime} F^{*}}{2}+\frac{3 G^{*}}{4}-\frac{B^{\prime} G^{*}}{2} \\
& +\left[2 A^{\prime}-F^{*}\left(1-A^{\prime}-B^{\prime}\right)-G^{*}\left(\frac{3}{2}-\frac{3 A^{\prime}}{4}-\frac{3 B^{\prime}}{2}\right)\right] \cos ^{2} \theta^{* \prime} \\
& +\left[-F^{*}\left(A^{\prime}+\frac{B^{\prime}}{2}\right)+G^{*}\left(\frac{3}{4}-\frac{3 A^{\prime}}{2}-\frac{3 B^{\prime}}{2}\right)\right] \cos ^{4} \theta^{* \prime} \\
& +\left[G^{*}\left(\frac{3 A^{\prime}}{4}+\frac{B^{\prime}}{2}\right)\right] \cos ^{6} \theta^{* \prime} .
\end{aligned} \\
& A^{\prime}=\frac{A(1+3 R)}{4+A(1-R)}, \quad B^{\prime}=\frac{A(1-R)}{4+A(1-R)}, \quad A=\frac{3 \rho_{00}-1}{1-\rho_{00}}
\end{aligned}
$$

Deriving $4^{\text {th }}$ Order Acceptance Correction

Now let's set $G=0$ and $F^{*}=\frac{-2 F}{1+F}$ to recover form of equation from PHYSICAL REVIEW C 98, 044907 (2018)
$\left[\frac{d N}{d \cos \theta^{* \prime} d \beta^{\prime}}\right]_{|\eta|} \propto 2+\frac{-2 F}{1+F}\left(1-\frac{B^{\prime}}{2}\right)+\left[2 A^{\prime}-\frac{-2 F}{1+F}\left(1-A^{\prime}-B^{\prime}\right)\right] \cos ^{2} \theta^{* \prime}+\left[-\frac{-2 F}{1+F}\left(A^{\prime}+\frac{B^{\prime}}{2}\right)\right] \cos ^{4} \theta^{* \prime}$.
Pull out constant factor $2 /(1+F)$.
$\left[\frac{d N}{d \cos \theta^{* \prime} d \beta^{\prime}}\right]_{|\eta|} \propto 1+F-F\left(1-\frac{B^{\prime}}{2}\right)+\left[A^{\prime}(1+F)+F\left(1-A^{\prime}-B^{\prime}\right)\right] \cos ^{2} \theta^{* \prime}+\left[F\left(A^{\prime}+\frac{B^{\prime}}{2}\right)\right] \cos ^{4} \theta^{* \prime}$.
$\left[\frac{d N}{d \cos \theta^{* \prime} d \beta^{\prime}}\right]_{|\eta|} \propto 1+\frac{B^{\prime} F}{2}+\left[A^{\prime}+F-B^{\prime} F\right] \cos ^{2} \theta^{* \prime}+\left[\left(A^{\prime} F+\frac{B^{\prime} F}{2}\right)\right] \cos ^{4} \theta^{* \prime}$.

