# $\varphi\text{-meson}~\rho_{00}$ acceptance QA

Gavin Wilks

University of Illinois at Chicago

04/20/2023

### Motivation for this study

- We performed the rapidity and centrality dependent studies with various |η| cuts.
- Artificial increase in  $\rho_{00}$  after all corrections as  $|\eta|$  cut decreases.
- Perhaps v<sub>2</sub> is the cause of these inconsistent results.
- v<sub>2</sub> for charged particles has been measured as a function of η and it decreases as |η| increases.
- Could the  $\phi$ -meson  $v_2$  depend more heavily on  $\eta$ ? We are using  $|\eta| < 1$ input  $v_2$  for all  $|\eta|$  cuts.



0.04

0.0

hesis.pdf

#### Acceptance + Resolution Method

- Assume RP = 0 rad
- Generate  $\phi$ -meson input  $p_T$  with known spectra.
- All φ-meson rapidity inputs are sampled from a uniform distribution.
- $v_2$  can be turned on or off.
  - On: use known  $v_2(p_T)$  distribution and randomly sample  $\phi$ - $\Psi_2$  generated with the  $v_2$  at a specific  $p_T$ .
  - Off:  $\phi$ -meson  $\phi$  angle is randomly sampled from uniform distribution.
- Cut on  $cos(\theta^*)$  w.r.t. RP using input  $\rho_{00}$ .
  - Shapes  $\cos(\theta^*)$  distribution to the corresponding  $\rho_{00}$ .
- Using input  $2^{nd}$  order EP Resolution  $R_2$  find  $\chi$  from distribution:

$$R_{2} = \frac{1}{2} \sqrt{\frac{\pi}{2}} \chi e^{-\frac{\chi^{2}}{4}} \left[ I_{0} \left( \frac{\chi^{2}}{4} \right) + I_{1} \left( \frac{\chi^{2}}{4} \right) \right]$$
 Eq. 1

#### Acceptance + Resolution Method

• Using 
$$\chi$$
 generate  $\Delta$  to simulate R<sub>2</sub>:  

$$P(\Delta) = \frac{1}{2\pi} \left[ e^{\frac{-\chi^2}{2}} + \sqrt{\frac{\pi}{2}} \chi \cos(2\Delta) e^{\frac{-\chi^2}{2} \sin^2(2\Delta)} (1 + \operatorname{erf}\left(\frac{\chi}{\sqrt{2}}\cos(2\Delta)\right)) \right]^{\text{Eq. 2}}$$

- Now we can calculate cos( $\theta^{*\prime}$ ) w.r.t. EP using (primed frame):  $\Psi_2{}' = \Psi_2 + \Delta$
- We cut on |η| of the Kaon daughters we therefore have two yield vs. cos(θ\*) histograms: before |η| cut and after |η| cut.
- We divide: (after  $|\eta|$  cut) / (before  $|\eta|$  cut)
- For the ρ<sub>00</sub>=0.33 case for each study. We fit this ratio histogram for the reaction plane cos(θ\*) using a 4<sup>th</sup> order function (slide 11, Eqn. 4), which provides us with F\* and G\*.

Eq. 3

### Acceptance + Resolution Method

- To reconstruct  $\rho_{00}$  for various input  $\rho_{00}$ , we fit the yield vs cos( $\theta^{*'}$ ) after  $|\eta|$  cut.
  - The inputs to this fit are F\*, G\* and the EP Resolution, which are fixed in the fitting function found on slide 12, Eqns. 5-8.
  - This function is consistent with the function from PHYSICAL REVIEW C 98, 044907 (2018) if we assume the G\* = 0 (the 4th order fit coefficient). See slide 13.

Now we will show results from these simulations with various input  $\rho_{00}$ ={0.25,0.33,0.40}.





#### v<sub>2</sub> ON 1.2 < p<sub>T</sub> < 1.8 -1 < y < 1 |η| < 0.4









### Summary and Next Steps (04/13/2023)

- We found that including  $v_2$  in the acceptance + Resolution simulation causes the reconstructed  $\rho_{00}$  to differ from the input  $\rho_{00}$ .
  - Larger effect when dealing with individual rapidity bins.
  - Reconstructed  $\rho_{00}$  is always lower than input.
- We should see what happens when we vary  $|\eta|$  cut for the same input kinematics with and without  $v_2$ .
- Try scaling  $v_2$  for smaller  $|\eta|$  cut to generate  $\cos(\theta^{*'})$  distribution, but use the F\* and G\* from  $|\eta| < 1$ . See if this explains the trend we see for rapidity dependence on slide 2.
- Possible solution: calculate  $v_2 vs p_T$  ourselves for different  $|\eta|$  cuts and these distributions in the simulation.





• v2 on



- Rapidity bins near edge of acceptance in pseudorapidity
- v2 off
- 1.2 < pT < 1.8 GeV/c



- Rapidity bins near edge of acceptance in pseudorapidity
- v2 on



- Rapidity bins near edge of acceptance in pseudorapidity
- v2 on (with and without scaling)
- 1.2 < pT < 1.8 GeV/c





15

## Summary (04/20/2023)

- -1 < y < 1: v2 leads to small difference between input and reco</li>
- 0.2 < y < 0.4: v2 leads to noticeable negative difference between input and reco
  - Specifically, for  $|\eta|$  cuts that significantly effect acceptance.
  - Opposite of expectation since we see a decrease in reco  $\rho_{00}$  rather than an increase which we see in the data.
- Edge of acceptance rapidity bins:
  - v2 off: small difference
  - v2 on: large difference
- v2 scaling effect:
  - for 0.2 < y < 0.4 and  $|\eta|$  < 0.4 the v2 scaling did not change the results.
  - Try other cases for these rapidity bins near edge of acceptance.
  - If difference is negligible, then this does not explain the increase we see in data.

#### Outlook

- Try other cases of v2 scaling.
- Why does v2 cause differences and how to address?

### Backup



p<sub>T</sub> GeV/c

0.2 < y < 0.6

Au+Au 19.6 GeV

- P<sub>co</sub> = 1/3

٩°





#### $p_T$ dependent study (1.2 < $p_T$ < 4.2, 20-60%) binned in pT

| η  cut   | integrated $\rho_{00}$ | stat. error |
|----------|------------------------|-------------|
| ŋ  < 0.4 | 0.3424                 | 0.0055      |
| ŋ  < 0.6 | 0.3416                 | 0.0041      |
| ŋ  < 0.8 | 0.3427                 | 0.0035      |
| η  < 1.0 | 0.3461                 | 0.0020      |

#### $p_T$ dependent study (1.2 < $p_T$ < 4.2, 20-60%) binned in pT and rapidity

| η  cut   | integrated $\rho_{00}$ | stat. error |
|----------|------------------------|-------------|
| η  < 0.6 | 0.3457                 | 0.0041      |
| η  < 1.0 | 0.3522                 | 0.0024      |

centrality dependent study ( $1.0 < p_T < 5.0$ , 20-60%) binned in centrality and pT

| η  cut   | integrated $\rho_{00}$ | stat. error |
|----------|------------------------|-------------|
| η  < 0.4 | 0.3613                 | 0.0046      |
| ŋ  < 0.6 | 0.3466                 | 0.0034      |
| η  < 0.8 | 0.3442                 | 0.0029      |
| η  < 1.0 | 0.3496                 | 0.0018      |

#### centrality dependent study (1.0 < $p_T$ < 5.0, 0-80%) binned in centrality and pT

| η  cut   | integrated $\rho_{00}$ | stat. error |
|----------|------------------------|-------------|
| η  < 0.4 | 0.3632                 | 0.0045      |
| η  < 0.6 | 0.3416                 | 0.0032      |
| η  < 0.8 | 0.3378                 | 0.0027      |
| η  < 1.0 | 0.3456                 | 0.0017      |

rapidity dependent study ( $1.0 < p_T < 5.0$ , 0-80%) binned in rapidity, centrality and pT

| η  cut   | integrated $\rho_{00}$ | stat. error |
|----------|------------------------|-------------|
| ŋ  < 0.4 | 0.3662                 | 0.0038      |
| ŋ  < 0.6 | 0.3489                 | 0.0027      |
| ŋ  < 0.8 | 0.3453                 | 0.0023      |
| η  < 1.0 | 0.3504                 | 0.0015      |

#### Deriving 4<sup>th</sup> Order Acceptance Correction

$$\begin{split} \left[\frac{dN}{d\cos\theta^*d\beta}\right]_{|\eta|} &= \frac{dN}{d\cos\theta^*d\beta} \times g(\theta^*,\beta).\\ g(\theta^*,\beta) &= 1 + F^*\cos^2\theta + G^*\cos^4\theta\\ &= 1 + \left(\frac{4F^* + 3G^*}{8}\right) - \left(\frac{2F^* + 3G^*}{4}\right)\cos^2\theta^* + \frac{3G^*}{8}\cos^4\theta^*\\ &- \frac{\cos 2\beta}{2}\left[F^*(1 - \cos^2\theta^*) + G^*(1 - \cos^2\theta^* + \cos^4\theta^*)\right]\\ &+ \frac{G^*\cos 4\beta}{8}\left[1 - \cos^2\theta^* + \cos^4\theta^*\right],\\ \int_0^{2\pi} d\beta \ g(\theta^*,\beta) &= g(\theta^*) \propto 1 + \left(\frac{4F^* + 3G^*}{8}\right) - \left(\frac{2F^* + 3G^*}{4}\right)\cos^2\theta^* + \frac{3G^*}{8}\cos^4\theta^*. \quad \text{Eq. 4} \end{split}$$

#### Deriving 4<sup>th</sup> Order Acceptance Correction

 $\frac{dN}{d\cos\theta^{*'}d\beta'} \propto 1 + A'\cos^2\theta^{*'} + B'\sin^2\theta^{*'}\cos 2\beta' + C'\sin 2\theta^{*'}\cos\beta'.$ 

1/1

$$\left[\frac{dN}{d\cos\theta^{*'}}\right]_{|\eta|} \propto 2 + F^* - \frac{B'F^*}{2} + \frac{3G^*}{4} - \frac{B'G^*}{2}$$
Eq. 5

$$+ \left[ 2A' - F^*(1 - A' - B') - G^*\left(\frac{3}{2} - \frac{3A'}{4} - \frac{3B'}{2}\right) \right] \cos^2 \theta^{*'} + \left[ -F^*\left(A' + \frac{B'}{2}\right) + G^*\left(\frac{3}{4} - \frac{3A'}{2} - \frac{3B'}{2}\right) \right] \cos^4 \theta^{*'} + \left[ G^*\left(\frac{3A'}{4} + \frac{B'}{2}\right) \right] \cos^6 \theta^{*'} .$$

$$A' = \frac{A(1+3R)}{4+A(1-R)} , \qquad B' = \frac{A(1-R)}{4+A(1-R)} , \qquad A = \frac{3\rho_{00}-1}{1-\rho_{00}}$$
 Eq. 6-8

### Deriving 4<sup>th</sup> Order Acceptance Correction

Now let's set G = 0 and  $F^* = \frac{-2F}{1+F}$  to recover form of equation from PHYSICAL REVIEW C 98, 044907 (2018)

$$\left[\frac{dN}{d\cos\theta^{*'}d\beta'}\right]_{|\eta|} \propto 2 + \frac{-2F}{1+F}(1-\frac{B'}{2}) + \left[2A' - \frac{-2F}{1+F}(1-A'-B')\right]\cos^2\theta^{*'} + \left[-\frac{-2F}{1+F}\left(A' + \frac{B'}{2}\right)\right]\cos^4\theta^{*'}.$$

Pull out constant factor 2/(1+F).

$$\begin{split} \left[\frac{dN}{d\cos\theta^{*\prime}d\beta^{\prime}}\right]_{|\eta|} &\propto 1 + F - F\left(1 - \frac{B^{\prime}}{2}\right) + \left[A^{\prime}(1+F) + F\left(1 - A^{\prime} - B^{\prime}\right)\right]\cos^{2}\theta^{*\prime} + \left[F\left(A^{\prime} + \frac{B^{\prime}}{2}\right)\right]\cos^{4}\theta^{*\prime}.\\ \left[\frac{dN}{d\cos\theta^{*\prime}d\beta^{\prime}}\right]_{|\eta|} &\propto 1 + \frac{B^{\prime}F}{2} + \left[A^{\prime} + F - B^{\prime}F\right]\cos^{2}\theta^{*\prime} + \left[\left(A^{\prime}F + \frac{B^{\prime}F}{2}\right)\right]\cos^{4}\theta^{*\prime}. \end{split}$$

THIS MATCHES THE SECOND ORDER ACCEPTANCE CORRECTION FORMULA