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1. Introduction33

High-energy particle collisions provide opportunities to study experimentally quarks and gluons (partons), the fundamental34

degree of freedom in the theory of Quantum Chromodynamics (QCD). In some of these collisions, incoming quarks and gluons35

(partons) interact with each other through the exchange of a high-momentum virtual particle, producing outgoing partons with36

high transverse momentum (pT). Such outgoing partons are highly virtual and will undergo a series of splitting processes as37

they come on mass shell. This process is called the parton shower, and can be described perturbatively in terms of the Dok-38

shitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations [1–3]. When the virtuality of the partons is comparable39

to the confinement scale ΛQCD, the non-perturbative transition to baryons and mesons (hadrons), known as hadronization,40

begins. Experimentally, the spray of the final-state hadrons can be measured and clustered into jets. Jets reconstructed with a41

clustering algorithm [4] can serve as a proxy for the kinematics of the outgoing partons.42

1.1. Motivation for the paper. While the interaction among partons can be well understood with the principles of perturbative43

QCD (pQCD), the non-perturbative components of the parton shower and hadronization remain challenging for theoretical44

calculations and rely mostly on phenomenological models in Monte Carlo event generators. Measurements of observables sensitive45

to such non-perturbative QCD (npQCD) effects will provide important tests for the theories and constraints on the models.46
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2 ANALYSIS NOTE: JET SUBSTRUCTURES WITH MULTIFOLD

Together with studies of observables calculable from pQCD, investigation of those sensitive to npQCD effects offers an avenue47

for a comprehensive understanding of the full parton-to-hadron evolution picture.48

Beyond the jet pT, or other combinations of the jet four-momentum observables, jet substructure observables [5] are useful49

tools that can provide insight into the parton shower and hadronization processes. To enhance perturbative contributions,50

SoftDrop [6] grooming is often used to remove wide-angle soft radiation within the jet. The procedure, detailed in Ref. [6], starts51

by re-clustering the jet with an angular-ordered sequential recombination algorithm called Cambridge/Aachen [7, 8]. Then the52

last step of the clustering is undone and the softer prong is removed based on the SoftDrop condition:53

(1) zg =
min(pT,1, pT,2)

pT,1 + pT,2
> zcut(Rg/Rjet)

β ,

where zcut is the SoftDrop momentum fraction threshold, β is an angular exponent, Rjet is the jet resolution parameter, pT,1,254

are the transverse momenta of the two subjets, and Rg is defined as:55

(2) Rg =
√
(y1 − y2)2 + (ϕ1 − ϕ2)2,

where y1,2 and ϕ1,2 are, respectively, the rapidities and azimuthal angles of the two subjets. zg and Rg describe the momentum56

imbalance and the opening angle of the SoftDrop groomed jet, respectively.57

Although the SoftDrop groomed jet substructure observables have been extensively studied both experimentally [9–14] and58

theoretically [15], the wide-angle and soft radiation which are dominated by npQCD processes, have not yet been explored in59

detail.60

One set of observables that are sensitive to the soft wide-angle radiation are known as CollinearDrop [16]. The general61

case involves the difference of two different SoftDrop selections SD1 = (zcut,1, β1) and SD2 = (zcut,2, β2) on the same jet. For62

nonzero values of SD1 and SD2 parameters with zcut,1 ≤ zcut,2 and β1 ≥ β2, SD2 aims to reduce the collinear contributions from63

fragmentation, and SD1 aims to reduce the wide-angle contributions from initial-state radiation (ISR), underlying event (UE)64

and pileup.65

As the QCD parton shower is angular ordered [17], the soft wide-angle radiation captured by the CollinearDrop jet observables66

happens on average at an early stage of the shower. Unlike CollinearDrop, SoftDrop then captures the late stage collinear and67

perturbative splittings. Therefore, a simultaneous measurement of CollinearDrop jet and SoftDrop jet observables can help68

illustrate the hard-soft dynamics in the parton shower.69

The CollinearDrop jet mass is defined in terms of the ungroomed jet mass M and the SoftDrop groomed jet mass Mg:70

(3) M(g) =

∣∣∣∣∑
i∈(groomed) jet

pi

∣∣∣∣ = √
E2

(g) − |p⃗(g)|2,

where pi is the four-momentum of the ith constituent in a (groomed) jet, and E(g) and p⃗(g) are the energy and three-momentum71

vector of the (groomed) jet, respectively. We denote the CollinearDrop groomed jet mass by a:72

(4) a =
M2 −M2

g

p2T
.

a is calculable in Soft Collinear Effective Field Theory (SCET) at the parton level [16]. As shown in Figure 1, such an observable73

is sensitive to soft radiation within the ring, where the contribution of underlying event and pileup is suppressed.74

Figure 1. CollinearDrop schematic.
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1.2. Motivation for the initial study. Jet substructure measurements can also be used to tag the flavor of the parton that75

initiated the shower. On an ensemble level, knowledge of whether a jet population is quark- or gluon-dominated, together with76

measurement of other jet observables, can be used in pp collisions as a precision QCD test, and in heavy-ion collisions as a77

handle on jet energy loss mechanism in the quark-gluon plasma. In this analysis, we explore the possibility of separating a jet78

population by its quark/gluon jet fraction through a correlation measurement between jet mass observable and jet charge.79

Jet charge is defined as80

(5) Qκ =
1

(pTjet)κ

∑
i∈jet

qi · (pTi)
κ

where qi and pTi are the electric charge and pT of the ith jet constituent, respectively, and κ is a tuning parameter that determines81

the relative importance of soft/hard charged particles within the jet. This is designed to be a proxy for the electric charge of82

the parton that initiates the parton shower.83

Jet mass is related to the QCD coupling while jet charge is related to the QED coupling, both of which are different for a84

quark vs. for a gluon. In particular, in the soft and collinear limit and in the absence of hadronization,85

(6) < M2
jet >≈

αSCF/A

π
pT

2
jetR

2
jet

where αS is the strong coupling constant, Rjet is the jet radius, and CF/A is the quadratic Casimir operator of the SU(3) gauge86

group in the fundamental/adjoint representation, where quarks are in the fundamental representation and gluons are in the87

adjoint representation. Since CA/CF = 9/4, we expect gluon jets to have larger masses on average. Since quarks are electrically88

charged while gluons are not, we also expect gluon jets to have a smaller |Q| on average.89

To compare with theory or model predictions or similar measurements done with data taken at other detectors, jet mea-90

surements need to be corrected for detector effects to uncover the “truth” information. This procedure is called unfolding.91

Traditionally this is done with a iterative Bayesian unfolding (IBU) method [18]. In this analysis, we explore a novel machine-92

learning based unfolding method, MultiFold, which can correct for detector effects in multiple dimensions in an un-binned fashion,93

therefore retaining the correlation between various substructure observables by design and suitable for a multi-dimensional jet94

substructure correlation measurement.95

We measure the following jet observables: pT, zg (defined in Eq. 1), Rg (defined in Eq. 2), M (defined in Eq. 3), Mg (defined96

in Eq. 3), and Qκ=2 (defined in Eq. 5). We explain the choice of κ = 2 for the jet charge in 6.2.1. We will suppress the κ = 297

superscript unless specified otherwise.98

1.3. Shortcuts to paper plots and the relevant sections. Our paper plots include Figs 27, 50 and 51, discussed in Sections99

6.4 and 6.6.100

2. Datasets, embedding and jet reconstruction101

2.1. Datasets and event selection. The STAR experiment [19] recorded data from
√
s = 200 GeV pp collisions during102

the 2012 RHIC run. As energetic charged particles travel from the interaction point to the perimeter of the Time Projection103

Chamber (TPC), they ionize the gas atoms in the TPC and leave hits, from which we reconstruct tracks. Neutral particles do104

not interact with the gas in the TPC and instead deposit their energy through the development of electromagnetic showers in105

Barrel Electro-Magnetic Calorimeter (BEMC) towers. Events are required to pass the “Jet Path 2” trigger, which requires that106

a minimum transverse energy ET > 7.3 GeV be deposited in a 1 × 1 patch in η × ϕ in the BEMC. Before any run selections,107

65M events pass this trigger selection, corresponding to an integrated luminosity of 23 pb−1. In addition, events are required to108

have primary vertices within ±30 cm from the center of the detector along the beam axis. We apply a 100% hadronic correction109

to tower energy measurement: if a charged track extrapolates to a tower, then the whole track’s pT is removed from the tower110

ET. If the track pT is greater than the tower ET, then the tower is removed completely. The same track and tower selections111

are applied as in Ref. [11] and [14], and summarized in Table 2.112

The bad run list is the same as [20]: 13040003, 13040016, 13040017, 13040018, 13040037, 13040040, 13040041, 13040042, 13040043, 13040044, 13040045,113

13040046, 13041002, 13041004, 13041006, 13041007, 13041008, 13041009, 13041010, 13041082, 13041101, 13041102, 13041108, 13041109, 13041110, 13041115, 13041116,114

13041119, 13042001, 13042002, 13042003, 13042006, 13042007, 13042008, 13042013, 13042015, 13042016, 13042017, 13042018, 13042019, 13042020, 13042022, 13042023,115

13042024, 13042025, 13042026, 13042027, 13042046, 13042047, 13042048, 13042049, 13042050, 13043005, 13043006, 13043011, 13043012, 13043013, 13043017, 13043023,116

13043030, 13043031, 13043032, 13043035, 13043044, 13043047, 13043048, 13043049, 13043050, 13043051, 13043052, 13043053, 13043054, 13043055, 13043056, 13043057,117

13043058, 13043059, 13043060, 13043063, 13044017, 13044018, 13044019, 13044020, 13044021, 13044022, 13044023, 13044024, 13044025, 13044026, 13044029, 13044030,118

13044031, 13044034, 13044118, 13044119, 13044121, 13044122, 13044123, 13044124, 13044125, 13044126, 13045001, 13045003, 13045005, 13045006, 13045007, 13045012,119

13045029, 13045056, 13045133, 13045134, 13045135, 13045138, 13045145, 13045146, 13045164, 13046001, 13046002, 13046003, 13046004, 13046008, 13046010, 13046011,120

13046012, 13046013, 13046014, 13046015, 13046017, 13046028, 13046029, 13046118, 13046119, 13046120, 13046121, 13047002, 13047003, 13047004, 13047014, 13047018,121

13047022, 13047023, 13047024, 13047026, 13047027, 13047028, 13047029, 13047030, 13047031, 13047032, 13047033, 13047034, 13047035, 13047036, 13047037, 13047039,122

13047040, 13047041, 13047042, 13047043, 13047044, 13047045, 13047046, 13047047, 13047048, 13047049, 13047050, 13047051, 13047052, 13047053, 13047054, 13047055,123

13047122, 13047123, 13047124, 13047126, 13048007, 13048022, 13048046, 13049004, 13049005, 13049050, 13049052, 13049075, 13049086, 13049087, 13049088, 13049089,124

13050007, 13050025, 13050026, 13050027, 13050033, 13050039, 13050042, 13050043, 13050044, 13050046, 13050047, 13050049, 13050050, 13051068, 13051080, 13051088,125

13051095, 13051102, 13052021, 13052022, 13052054, 13052063, 13052068, 13053010, 13053021, 13054004, 13054005, 13054006, 13054007, 13054008, 13054009, 13054011,126

13054012, 13054013, 13054014, 13054015, 13054016, 13054017, 13054018, 13054019, 13054020, 13054022, 13054042, 13054045, 13054046, 13054057, 13055015, 13055072,127

13055081, 13055082, 13055086, 13055087, 13055088, 13055089, 13055090, 13056011, 13056012, 13056034, 13056035, 13056037, 13056038, 13056039, 13057038, 13057039,128
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13058019, 13058030, 13058047, 13058048, 13059003, 13059004, 13059005, 13059006, 13059007, 13059008, 13059009, 13059010, 13059011, 13059012, 13059013, 13059014,129

13059015, 13059016, 13059017, 13059018, 13059019, 13059020, 13059021, 13059022, 13059023, 13059025, 13059026, 13059027, 13059035, 13059037, 13059038, 13059039,130

13059076, 13059077, 13059078, 13059079, 13059080, 13059082, 13059083, 13059084, 13059085, 13059086, 13059087, 13060001, 13060002, 13060003, 13060009, 13060012,131

13061026, 13063033, 13064030, 13064057, 13064059, 13064074, 13065048, 13066035, 13066036, 13066101, 13066102, 13066104, 13066109, 13066110, 13067001, 13067002,132

13067003, 13067004, 13067005, 13067006, 13067007, 13067008, 13067009, 13067010, 13067011, 13067012, 13067013, 13067014, 13067015, 13067017, 13068017, 13068022,133

13068027, 13068029, 13068034, 13068036, 13068037, 13069006, 13069009, 13069029, 13070030, 13070056, 13071034, 13071037, 13071038, 13071040.134

The bad tower list is also the same as [20]: 34, 95, 106, 113, 160, 182, 266, 267, 275, 280, 282, 286, 287, 293, 308, 410, 504, 533, 541, 555, 561, 562, 594,135

609, 615, 616, 629, 633, 637, 638, 647, 650, 653, 657, 671, 673, 743, 789, 790, 791, 792, 806, 809, 810, 811, 812, 813, 814, 821, 822, 823, 824, 829, 830, 831, 832, 837, 841, 842,136

843, 844, 846, 849, 850, 851, 852, 857, 873, 875, 882, 897, 899, 903, 939, 953, 954, 956, 993, 1026, 1028, 1044, 1046, 1048, 1080, 1081, 1100, 1125, 1130, 1132, 1180, 1197,137

1198, 1199, 1200, 1204, 1207, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1233, 1237, 1238, 1240, 1241, 1242, 1243, 1244, 1257, 1258, 1259, 1260, 1294, 1312, 1348, 1353,138

1354, 1375, 1382, 1388, 1407, 1409, 1434, 1448, 1537, 1567, 1574, 1575, 1597, 1612, 1654, 1668, 1709, 1713, 1762, 1765, 1766, 1877, 1878, 1984, 2032, 2043, 2054, 2073, 2077,139

2092, 2093, 2097, 2107, 2162, 2168, 2214, 2305, 2392, 2409, 2415, 2439, 2445, 2459, 2589, 2590, 2633, 2652, 2749, 2834, 2961, 2969, 3005, 3017, 3070, 3071, 3186, 3220, 3289,140

3360, 3473, 3493, 3494, 3495, 3508, 3588, 3604, 3611, 3668, 3678, 3679, 3690, 3692, 3718, 3732, 3738, 3821, 3838, 3840, 3927, 3945, 4005, 4006, 4013, 4017, 4018, 4019, 4053,141

4057, 4059, 4124, 4331, 4343, 4355, 4357, 4458, 4464, 4500, 4677, 4678, 4684, 4768, 360, 493, 779, 1284, 1306, 1337, 1438, 1709, 2027, 2445, 3407, 3720, 4217, 4288. Note142

briefly for the record how the bad run and tower lists were created.143

2.2. Embedding. Embedding sample contains particle-level and detector-level jets used for correction of detector effects. The144

particle-level events are generated with PYTHIA6 [21] with the STAR tune [22]. This is a single-parameter modification to the145

Perugia 2012 tune [23] to better match STAR data. The selections on these PYTHIA events and particles are summarized in146

Table 1.147

The PYTHIA events are then run through GEANT3 [24] simulation of the STAR detector, and embedded into data from148

zero-bias events from the same run period as the analyzed data. The selections on the embedding events, tracks and towers are149

the same as the ones on data, and are summarized in Table 2.150

Three versions of embedding samples are relevant to this analysis.151

• 2015 embedding This is the embedding used by previous analyses [11] and [14], but has relatively low statistics. Most152

of the studies shown in the note as of now are based on this embedding, unless specified otherwise. The p̂T bins and153

weights for event generation can be found in the embedding Drupal page.154

• 2021 embedding This is the embedding used by an ongoing analysis [Dmitry’s analysis] and has a higher statistics,155

but has π0, η and Σ0 decayed at the particle-level. In the 2015 embedding, these particles were kept stable at the156

particle-level and only decayed at the detector-level in GEANT. The distributions of some jet substructure observables157

are no longer comparable with analyses published with the 2015 embedding. In addition, there is an increase in fake158

rate for jets and high-pT tracks seen in this embedding, which we do not understand yet. The p̂T bins and weights for159

event generation can be found in the embedding Drupal page.160

• 2024 embedding This embedding will have high statistics, the same decay treatment as the 2015 embedding, and rea-161

sonable fake rate for jets, but has not been produced yet.162

Comparisons of jet observable distributions between the 2015 embedding (“old embedding”), 2021 embedding (“new embed-163

ding”) and data are shown in Figure 2. The agreement among them demonstrates the validity of the embedding procedure.164

The definitions for these observables are given in the end of Section 1. The details of jet reconstruction are given in the next165

subsection. How do you mock up the high Tower trigger in the embedding?166

2.3. Jet reconstruction and matching. We reconstruct jets from TPC tracks (0.2 < pT < 30 GeV/c, with a charged pion167

mass assignment) and BEMC towers (0.2 < ET < 30 GeV, assuming massless) using the anti-kT sequential recombination168

clustering algorithm [4] with a resolution parameter of R = 0.4. We apply the selections of pT > 15 GeV/c, |η| < 0.6, transverse169

energy fraction of all neutral components < 0.9, and M > 1 GeV/c2 on reconstructed jets, consistent with the selections in Ref.170

[14]. Similar to Ref. [11] and [14], no background subtraction is done, because the UE contribution to jets is low for STAR171

kinematics and unfolding can correct for any fluctuation in it. In addition, we select jets that pass SoftDrop grooming with172

the standard cuts of (zcut, β) = (zcut,2, β2) = (0.1, 0). For this analysis, the less aggressive SoftDrop grooming criteria is set to173

no grooming, (zcut,1, β1) = (0, 0), so the CollinearDrop groomed observables are the difference in the ungroomed and SoftDrop174

groomed observables. This simplification can be made since the wide-angle contributions from ISR, UE and pileup are not175

significant for the dataset used in this analysis. Specifically, the contribution of UE to jet pT for a jet with 20 < pT < 25 GeV/c176

is less than 1% [25].177

The method for jet reconstruction (anti-kT, R = 0.4, full jets reconstructed with charged particle tracks measured in the178

Time Projection Chamber and neutral towers measured in the Barrel Electromagnetic Calorimeter), and event/track/tower/jet179

selections used in this analysis are summarized in Tables 1 and 2.180

For the events that pass the selections in embedding, we reconstruct detector-level jets, and geometrically match a detector-181

level jet to a particle-level jet with the following procedure:182

• If embedding event does not pass the event cut, but PYTHIA event does, then all the particle-level jets in the event are183

missed184

• If both the embedding and PYTHIA events pass the event cut, sort the detector-level and particle-level jets by pT into185

2 lists186

• Starting from the highest pT particle-level jet in the list, calculate ∆R =
√
(∆y)2 + (∆ϕ)2 with the highest pT detector-187

level jet.188

https://drupal.star.bnl.gov/STAR/starsimrequests/2015/sep/16/collinsiff-run12
https://drupal.star.bnl.gov/STAR/blog/veprbl/run12-pp200-additional-embedding-request
https://drupal.star.bnl.gov/STAR/starsimrequests/2023/Dec/11/Jet-structure-embedding-Run-12-pp-200-GeV
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Figure 2. Jet observable distributions for reconstructed jets in embeddings and data.

Selections
Events events with a jet having a pT value greater than twice the upper value of the p̂T bin removed,

events with |vz| > 30 cm removed,
events whose embedding is in bad run list removed

Charged particles 0.2 < pT < 30 GeV/c, |η| < 1
Neutral particles 0.2 < ET < 30 GeV, |η| < 1

Jets anti-kT R = 0.4, pT > 5 GeV/c, |η| < 0.6, pass (zcut, β) = (0.1, 0)

Table 1. PYTHIA selections

Selections
Events events with a jet having a pT value greater than twice the upper value of the p̂T bin removed,

events with |vz| > 30 cm removed,
events whose embedding is in bad run list removed,
events that do not pass JP2 trigger (ET > 7.3 GeV) removed,
events that have a track pT > 30 GeV/c or a tower ET > 30 GeV removed

Tracks 0.2 < pT < 30 GeV/c, |η| < 1,
DCA < 1 cm, Nhits,fit ≥ 20, Nhits,fit/Nhits,max ≥ 0.52

Towers 0.2 < ET < 30 GeV, |η| < 1
not in bad tower list

Jets anti-kT R = 0.4, pT > 15 GeV/c, |η| < 0.6,
M > 1 GeV/c2, neutral pT scalar sum fraction < 0.9, pass (zcut, β) = (0.1, 0)

Table 2. Embedding and data selections

– If ∆R < 0.4, then these 2 jets are matched. Remove them from the lists189

– If ∆R > 0.4, then repeat this comparison for the highest pT PYTHIA jet with the second highest pT embedding190

jet in the list191

• If no detector-level jet has ∆R < 0.4 with the particle-level jet, then the PYTHIA jet is missed192

• If after all the particle-level jets are looped through, there are still jets in the detector-level jet list left unmatched, then193

they are fakes194

The effect of the selections and jet matching on the efficiency as a function of particle-level jet pT is shown in Figure 3.195
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Figure 3. Number of matched reconstructed jets in the embedding sample dividing by the number of truth
jets, as a function of truth jet pT.

p̂T boundaries weights from PYTHIA weights from HERWIG
15-20 1.9 1.7
20-25 0.25 0.24
25-30 4.3E-2 4.3E-2
30-35 8.9E-3 8.9E-3
35-40 2.0E-3 2.0E-3
40-45 4.7E-4 4.5E-4
45-50 1.1E-4 1.0E-4
50-2000 3.6E-5 2.9E-5

Table 3. Event weights for PYTHIA8 and HERWIG simulations

2.4. MC event generation. For comparison with Monte Carlo event generator predictions and estimate of systematic un-196

certainties due to prior variation, we also generate events with PYTHIA 8.303 Detroit tune [26] and HERWIG 7.2.2 Default197

tune [27]. To ensure that the generated events contain hard scattering processes, we set “HardQCD:all = on” in PYTHIA and198

“insert SubProcess:MatrixElements[0] MEQCD2to2” in HERWIG. 200,000 events are generated for each p̂T bin, and weights199

(not normalized) are determined from cross sections given by PYTHIA and HERWIG. Table 3 lists the cuts on p̂T bin and the200

weights in PYTHIA and HERWIG. Similar selections for particles and jets are made as in Table 1.201

3. Unfolding202

3.1. Method. The goal of unfolding is to “undo” the detector effects on raw data and extract the truth distributions of jet203

observables, i.e., the distributions of what we would measure if our detector were perfect. Jet substructure observables are usually204

unfolded with a binned, one- or two-dimensional IBU method. Potentially, it is more desirable to unfold in higher dimensions205

which can account for the possible correlation in the multi-dimensional observable phase space. This can be done with MultiFold,206

a machine learning method that simultaneously corrects for multiple observables in an un-binned fashion.207

It has been shown that MultiFold and IBU both converge to the maximum likelihood estimate of the true particle-level208

distribution [28]. However, there are several advantages of MultiFold over IBU, as was also detailed in [28]. First, IBU requires209

binning of the data beforehand, while MultiFold is unbinned. While experimental data is usually presented in a binned fashion,210

with MultiFold one can choose such a binning after unfolding, possibly taking into account the uncertainties that might have211

arisen from the unfolding procedure, but with IBU the choice would be more arbitrary, and one needs to redo the unfolding if212

the binning needs to be changed. Second, IBU cannot unfold for more than three observables simultaneously while MultiFold213

can. In this analysis, we unfold for six jet observables, pT, charge, mass, groomed jet radius, subjet shared momentum fraction,214

and groomed jet mass. This is not feasible with IBU. (In principle, MultiFold can be generalized to OmniFold, which can unfold215

for the full phase space information). Third, since the multi-dimensional phase space at the raw data level is used as input for216

the unfolding procedure, the output of MultiFold retains the correlation information between the observables, something that217

would be hard to access with IBU.218

We fully corrected six jet observables simultaneously for detector effects using MultiFold. In addition to jets from data,219

matched pairs of jets from simulations with (detector-level) and without (particle-level) detector effects are input for MultiFold.220

See Section 2.2 for the procedures for creating these matched jet pairs.221
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Figure 4. Iteration 1 Step 1

MultiFold achieves likelihood-free inference through iterative reweighting. For an overview of the MultiFold method, see [28].222

A key concept for this reweighting problem is the likelihood ratio, defined in [28] as,223

(7) L[(w,X), (w′, X ′)](x) =
p(w,X)(x)

p(w′,X′)(x)

“where p(w,X) is the probability density of x estimated from empirical weights w and sample X, which can be approximated224

using a classifier to distinguish (w,X) from (w′, X ′)” [29]:225

(8) L[(w,X), (w′, X ′)](x) ≈ f(x)

1− f(x)

where f(x) is “a neural network and trained with the binary cross-entropy loss” (loss function for a categorization problem).226

“Here, we use neural network classiers to iteratively reweight the particle-and detector-level Monte Carlo weights,” turning the227

reweighting problem into a classification problem that can be accomplished through machine learning.228

Each iteration of MultiFold has two steps. Intuitively, in step 1, detector-level jets are reweighted to match data jets, and in229

step 2, particle-level jets with the new weights of the detector-level jets are further reweighted to estimate the truth. In each of230

the two steps, reweighting is done with a dense neural network architecture. There are three hidden layers, each with 100 nodes.231

The activation function for the dense layer is rectified linear unit. The activation function for output layer is sigmoid. The loss232

function is binary cross-entropy. The optimization algorithm is Adam. The input dimension is the number of jet observables233

(6 in our case). The output dimension is 2 (corresponding to either sample (w,X) or (w′, X ′)). We keep these parameters and234

architecture setup as default.235

The details of the method are as followed. We use the notation from [28] where m denotes a jet in the detector-level jet236

phase space (i.e. from data or embedding (emb)), and t denotes a jet in the particle-level phase space (i.e. from PYTHIA).237

The schematic of step 1 of the first iteration is shown in Figure 4. Here we first separate the data jets (each with weight 1) and238

embedding jets (each with the corresponding event cross section weight ν0(m ∈ emb)) into a training set and a validation set.239

We use the default values of training fraction of 80% and validation fraction of 20%. A dense neural network model is trained240

to distinguish the data jets coming from the training set from the embedding jets coming from the training set. The validation241

set is used to decide when the training should stop. By default, the number of epochs per step is 100, and if the loss value for242

the validation set stops improving after 10 epochs (patience), then the training stops. We use a patience value of 50 since it243

gives us better closure than a patience value of 10 (show plots comparison here). The trained model f(x) is then applied to do244

prediction (in batches, with batch size determined by the sample size) on the entire sample of data and embedding jets (both245

training and validation included). In machine learning, prediction is typically done on samples that are not trained on, but this246

is acceptable here since the procedure is repeated for multiple iterations. (Hannah said something like this, need to confirm).247

The prediction for the detector-level jets f(m ∈ emb) are used to calculate new weights:248

(9) ω1(m ∈ emb) = ν0(m ∈ emb)
p(1,data)(m)

p(ν0, emb)(m)
≈ ν0(m ∈ emb)

f(m ∈ emb)

1− f(m ∈ emb)

The weights ω1(m ∈ emb) are “pulled” to step 2.249

In step 2 of the first iteration (see Figure 5), the datasets of interest here are two sets of PYTHIA jets, with the same250

observable values but different weights. The first one is with weights “pulled” from step 1, ω1(t) = ω1(m ∈ emb). The second251

set is with weights as the original event cross section weights ν0(t) = ν0(m ∈ emb). Naively, we can reweight the second set252

to the first set by simply taking the ratios of ω1(t)/ν0(t). However, due to the stochastic nature of detector response, for two253

identical jets t1, t2, we might not have ω1(t1) = ω1(t2). This is why the second step is needed to convert these “per-instance” [28]254

(where each instance is a detector-level and particle-level pair) weights to a function ν1(t) that gives a unique prescription to any255

particle-level jet, since intuitively, ν1(t) is obtained from training from a population of jets and outputs a value representative256

of the ensemble (as opposed to “per-instance”). We use the same neural network setup as step 1 and the same parameters of257

validation fraction being 20%, maximum number of epochs being 100, and patience being 50. Prediction is again done on both258
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Figure 5. Iteration 1 Step 2

Figure 6. Iteration n Step 1

the training and validation samples, and weights ν1(t) corresponding to the second set of particle-level jets are “pushed” to step259

1 of next iteration.260

(10) ν1(t) = ν0(t)
p(ω1,PYTHIA)(t)

p(ν0,PYTHIA)(t)
≈ ν0(t)

g(t)

1− g(t)

where g(x) is the model trained in step 2.261

To clarify, training and validation are done with weights, prediction is done without weights, but the weights calculated from262

the prediction take into account the initial weights assigned at the beginning of the step.263

For iteration n > 1, the procedure is similar. In step 1 (see Figure 6), instead of original cross section weights, the embedding264

jets get assigned weights “pushed” from step 2 of iteration (n − 1), νn−1(m ∈ emb) = νn−1(t). In step 2 (see Figure 7), the265

initial weights for the two sets of particle-level jetsare weights “pulled” from step 1 of iteration n, ωn(t) = ωn(m ∈ emb), and266

weights “pushed” from step 2 of iteration (n− 1), νn−1(t). Putting this together, we have:267

ωn(m ∈ emb) = νn−1(m ∈ emb)
p(1,data)(m)

p(νn−1, emb)(m)

νn(t) = νn−1(t)
p(ωn,PYTHIA)(t)

p(νn−1,PYTHIA)(t)
(11)

In step 2 of the last iteration N , instead of getting “pushed” to step 1 of the next iteration, the weights νN (t) are taken as268

the output of MultiFold, giving the unfolded jet population:269

(12) p(1,unfolded)(t) = νN (t) · p(1,PYTHIA)(t)

See Figure 8 for a summary of the correction procedure with MultiFold.270

3.2. Closure test. We perform a closure test to verify the validity of the MultiFold method and investigate its dependence of271

the prior and number of iterations. The matched jet pairs (matched between PYTHIA and embedding) are separated into two272

statistically independent sets according to whether the event IDs assigned in the simulation is even or odd. These two sets are273

denoted “sample 1” and “sample 2”. Sample 2 is used to mimic data and truth jets. Sample 1 detector-level and particle-level274

and sample 2 detector-level jets are input to MultiFold. See Fig. 9 for a closure test procedure illustration.275

Due to the random nature of machine learning methods’ weight initialization process, individual result of MultiFold is not276

reproducible, especially when run on GPUs. However, the average result over many random seeds is reproducible. The results277



ANALYSIS NOTE: JET SUBSTRUCTURES WITH MULTIFOLD 9

Figure 7. Iteration n Step 2

shown below are averages over 100 seeds. We show in Section 3.3 that the choice of 100 does not affect the unfolding result on278

data.279

Figure 10 shows MultiFold achieves decent closure at 3 iterations, as can be seen by the agreement between MultiFolded280

spectra (red) and sample 2 particle-level spectra (green) for all observables. In addition, the significant difference for most281

observables between sample 2 detector-level spectra (grey shaded) and the generator (green) shows the need for unfolding, and282

the difference between the grey detector-level and red unfolded shows the effect of unfolding. Note that the binning is chosen283

after MultiFold to make histograms; the unfolding procedure itself is unbinned. Note also that the particle-level and unfolded284

substructure observable distributions shown include all jets with pT > 5 GeV/c; additional cuts can be applied later if needed.285

Error bars indicate the statistical uncertainties. Specifically, the statistical uncertainties on the MultiFolded spectra are estimated286

based on sample 1 particle-level statistics for convenience. We treat the statistical uncertainties more carefully in Section 4 for287

unfolding on data.288

Figure 11 shows MultiFold closure from 2 to 8 iterations. Ratios are taken after each distribution is normalized per jet.289

Statistical uncertainties (estimated from prior) are only shown in error bars for 4 iterations. The variation in the unfolded290

spectra due to the variation in number of iterations is small.291

We check that the robustness against the variation in the number of iteration persists even when samples 1 and 2 are292

significantly different. We modify sample 1 weights by multiplying the original cross section weights for sample 1 jets (both293

generator- and detector-levels) by the ratios of HERWIG over PYTHIA pT spectrum. We rerun the closure test and take the294

average of the results from 100 seeds. Figure 12 shows that the unfolded result becomes stable after 2 iterations as well.295

Figure 13 shows MultiFold closure at 3 iterations, with statistical uncertainties on samples 1 and 2 both included, and296

unfolding systematic uncertainty on data included as well (See Section 5). This means that any non-closure will be covered by297

the unfolding systematics.298

3.3. Application on data and obtaining the fully corrected distributions. Particle-level, detector-level and data jets299

are used for MultiFold on data. The initial weights for particle-level and detector-level jets are determined by the cross section300

weights from PYTHIA. The initial weights for data need to have fake rates taken care of properly. We use matched jets from301

particle-level and detector-level as the prior, so we need to effectively “remove” the fake jets from the data before unfolding302

with MultiFold. To do this, we put in (1−fake rate) instead of 1, as weights for data. We estimate fake rates by taking the303

number of embedding jets that are not matched to particle-level jets (weighted by event cross sections) and dividing it by the304

total number of embedding jets (weighted by event cross sections). Figure 14 shows that fake rate has a weak dependence on305

any jet observable of our interest. We choose to assign a value of fake rate to each data jet based on its pT.306

After running MultiFold, we first select a pT range, and for a jet observable x, take the unfolded distribution of x averaged307

from 100 seeds at 3 iterations yunf (pT, x). (Note: we experimented with different criteria to determine the number of iterations.308

3 iterations was chosen for Method 1 of Section 5.3. See discussion in 5.3 for more details.) To obtain the fully corrected jet309

observable distributions, we also need to include the contribution from missed jets, so we obtain310

(13) yfull(pT, x) =
yunf (pT, x)

e(pT, x)

To obtain the per-jet normalized distribution of ỹfull(pT, x), where ỹ indicates that the distribution is normalized, we use:311

(14) ỹfull(pT, x)
.
=

yfull(pT, x)∫
dxyfull(pT, x)

=
yunf (pT, x)

e(pT, x)
∫
dx

yunf (pT,x)
e(pT,x)

Figure 15 shows the ratio of the normalized fully corrected jet mass distribution (ỹfull(pT ∈ (20, 25) GeV/c,m)) over normal-312

ized PYTHIA jet mass distribution for jets with 20 < pT < 25 GeV/c, with the MultiFolded distribution being an average of313

over 100 or 200 seeds. Error bars indicate the standard deviations from varying the seeds, which will be considered as a source314
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Figure 8. Schematic of the correction procedure with MultiFold.
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Figure 9. Unfolding closure test procedure illustration

Figure 10. Sample 2 jet observable distributions at detector-level (grey) and particle-level (green) and Multi-
Folded distributions (red). Error bars indicate only statistical uncertainty.

Figure 11. Ratios of MultiFolded normalized jet observable distributions over normalized truth distributions
for iterations 2 to 8. Each color is for a different number of iteration parameter. Statistical uncertainty is shown
for iteration 4.
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Figure 12. Same as Fig 11, except the weights of the prior jets are scaled by the ratio of HERWIG pT spectrum
over PYTHIA pT spectrum.

Figure 13. Ratios of MultiFolded normalized jet observable distributions over normalized truth distributions at
3 iterations averaged over 100 seeds. Red error bars indicate the statistical uncertainties on sample 1, black error
bars indicate the statistical uncertainties on sample 2, and red error bands indicate the unfolding uncertainties
on data.

Figure 14. (1−fake rate) as a function of embedding jet observable values

of systematic uncertainty in Section 5. This shows that taking the average over 100 seeds is sufficient, since doing so over more315

than 100 seeds has little effect on the means and standard deviations of the jet observable spectra.316
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Figure 15. Ratios of fully corrected and normalized jet mass distributions over normalized PYTHIA distribu-
tions. Error bars indicate the standard deviation due to variation from seed to seed.

4. Statistical uncertainties317

Statistical uncertainty is estimated with a bootstrap method. In the nominal case, each jet in the raw data has an initial318

weight of (1−fake rate). For each bootstrap trial, we vary the initial weight of each jet to (1−fake rate)·Pois(1), where Pois(1)319

denotes a Poisson distribution with a mean at 1. This method is analogous to the “kCovToy2” option in RooUnfold. We run320

100 bootstrap trials, obtain the unfolded distribution of a jet observable x for each trial, and take the standard deviation of the321

100 distributions as σunf,stat(pT, x). Then the statistical uncertainty that we report is322

(15) σ̃full,stat(pT, x) =
σfull,stat(pT, x)∫
dxyfull(pT, x)

=
σunf,stat(pT, x)

e(pT, x)
∫
dxyfull(pT, x)

where σ̃ indicates that the uncertainty is associated with a normalized distribution.323

Since σunf,stat(pT, x) has contribution due to limited statistics in both raw data and in the unfolding procedure, but the324

statistical error from the misses does not have contribution from the unfolding procedure, scaling σunf,stat(pT, x) by efficiency325

as in the previous equation might have resulted in a slight overestimation of the statistical uncertainty.326

5. Systematic uncertainties327

We list the sources of systematic uncertainties for this analysis:328

• Hadronic correction: Nominally, 100% of track energy from matched towers is subtracted. We vary this fraction to 50%.329

See details in [30].330

• Tower scale: We increase this by 3.8%. See details in [31].331

• Tracking efficiency: We decrease this by 4%. See details in [31].332

• Unfolding procedure, treated as correlated uncertainties:333

(16) σ̃unf (pT, x) = max (σ̃Herwig(pT, x), σ̃Pythia8(pT, x), σ̃seed(pT, x), σ̃it(pT, x))

– Variation of the random seed.334

– Variation of the number of iterations.335

– Variation of the prior.336

5.1. Variation of detector effects. For hadronic correction, tower scale and tracking efficiency uncertainty, the337

variation is done in the embedding (but not in data, following the convention in previous analyses [11] and [14]), which affects338

the prior for unfolding, PYTHIA misses/matches distribution and efficiency. The analysis procedure is carried out with these339

variations (including averaging over 100 random seeds, etc). The fully corrected spectrum is compared with the nominal full340

spectrum, and the difference is taken as one side of the systematic uncertainty.341

5.2. Variation of the random seed. We run MultiFold with 100 different random seeds that affect the initialization of the342

weights of the neural networks and the train-test split, obtain the unfolded distribution of a jet observable x for each seed, take343

the error on the mean over the 100 distributions (i.e., the standard error), and denote it as σseed(pT, x).344

We choose to characterize this uncertainty with the error on the mean instead of standard deviation, because increasing the345

number of measurements by sampling with different seeds should decrease the randomness of the measurement.346

The uncertainty associated with the normalized distribution after misses are taken into account is347

(17) σ̃seed(pT, x) =
σseed(pT, x)∫
dxyfull(pT, x)

.

5.3. Variation of the number of iterations. Two different treatments of this source of systematic uncertainty were applied348

to different results.349
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5.3.1. Method 1. We take the maximum deviation from 2-8 iterations with the nominal (3 iterations),350

σit(pT, x) = maxi∈[2,8] (|yunf,i(pT, x)− yunf (pT, x)|), then the uncertainty associated with the normalized distribution is351

(18) σ̃it(pT, x) =
σit(pT, x)∫

dxyfull(pT, x)

5.3.2. Method 2. We do not explicitly account for the variation of the number of iterations as a separate source of uncertainty.352

Going to a higher number of iterations reduces the prior dependence bias. However, the limited statistics (in both the prior353

sample and data) introduces unwanted fluctuations at high number of iterations. The limited statistics in embedding can manifest354

through a large uncertainty from the variation of initial seeds, and the limited statistics in data can manifest through a large355

statistical fluctuation from variation of the statistical bootstrap trials. Therefore, the number of iterations can be selected by356

considering when a) the prior dependence uncertainty, b) seed uncertainty, and c) statistical uncertainty are low. When unfolding357

with the 2021 embedding, we select an iteration number of 12, low enough such that the uncertainty due to seed variation and358

statistical uncertainty are both reasonable, at the cost of a non-negligible prior dependence uncertainty.359

Mathematically, the most correct number of iterations is infinity. The deviation of the result due to not able to perform an360

infinite number of iterations shows up as the prior dependence. Therefore, the prior variation uncertainty effectively accounts361

for the uncertainty due to the number of iterations not being ideal.362

5.4. Prior variation. Prior variation uncertainty is the dominant source for both [14] and this analysis. As we try to come up363

with the most appropriate approach for accounting for this uncertainty in MultiFold, we have tried several different approaches364

as detailed below.365

5.4.1. Method 0. Reweight prior to HERWIG or PYTHIA8 weights in 2D, and then unfold data with it. This is the same method366

as used in previous analyses such as [14]. Uncertainties in Sections 6.1 and 6.2 are accounted for with this method. We generate367

HERWIG7 (LHC-UE-EE-4-CTEQ6L1 tune) [32] and PYTHIA8 (Detroit tune) [26] events and apply the same particle and jet368

selections. Then we select on 20 < pT < 30 GeV/c and 30 < pT < 50 GeV/c jets, take the ratio of jet mass distribution (at truth369

level) of HERWIG7 (PYTHIA8) over PYTHIA6, for the two pT bins respectively, and then reweight the matched PYTHIA6370

embedding and generator jets by the mass ratios for unfolding.371

5.4.2. Method 1. Reweight prior to HERWIG or PYTHIA8 weights in 6D, and then unfold data with it. For this method and372

the ones following, HERWIG7 events are generated with the default 7.2 tune [27]. Even though only a in of the observables that373

we unfolded for is reported for any given measurement, all 6 are used for unfolding, so prior variation should take into account374

of all of them.375

Binning chosen: 10 GeV for pT, [−0.8,−0.15,−0.1,−0.05, 0, 0.05, 0.1, 0.15, 0.8] for Q, 1 GeV for M and Mg, and 0.1 for Rg376

and zg.377

However, the binning for the reweighting is significantly restricted by the statistics of our PYTHIA6 sample and its embedding.378

In particular, this binning might not capture the difference in shape of a between different MC models, especially in the small379

but nonzero a region, so the apparent small prior variation uncertainty in a measurement could be attributed to underestimation380

of prior variation itself. This leads us to move to Method 2.381

5.4.3. Method 2. Reweight prior to HERWIG or PYTHIA8 weights in 7D, and then unfold data with it. We additionally include382

a-reweighting with binning of383

[−0.01, 0.000001, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04, 1]. The first bin contains only jets with a = 0. We also relax the pT to two384

bins only: 20 < pT < 30 GeV/c and pT < 30 GeV/c. pT is not included as a dimension to reweight, since we do not aim to385

correct the pT spectrum per se, but rather aim to study the dependence of the substructure observables on pT. The total number386

of bins for the reweighting is 432640. This shows again that having a high-statistics embedding sample is important for this387

analysis.388

Note that all the methods above rely on reweighting the prior in a binned manner. Although this might seem a sacrifice of389

MultiFold’s full potential of correcting data in a completely unbinned way, we benefit from not having to run the full embedding390

procedure on two other other truth-level samples for HERWIG and PYTHIA8.391
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6. Results392

In this section, we present results obtained using the methods described above. Sections 6.1, 6.4 and 6.6 are most393

relevant to the paper, while Sections 6.2, 6.3 and 6.5 contain discussions of preliminary results that are not394

shown in the paper.395

6.1. Jet mass. Figure 16 shows the fully corrected normalized jet mass distributions for 20 < pT < 25 GeV/c, 25 < pT < 30396

GeV/c and 30 < pT < 40 GeV/c. Red markers are data fully corrected with MultiFold while black markers are with RooUnfold397

[14]. The error bands in the top panels include both statistical and systematic uncertainties. The bottom panels show the398

ratio of the MultiFolded distributions over RooUnfolded distributions, where the error bands include only the uncorrelated399

systematic uncertainties, calculated by taking the quadrature of the unfolding systematics from MultiFold and RooUnfold.400

For the systematic uncertainties for the MultiFolded result, Method 1 of 5.3 and Method 0 of 5.4 are applied, since they are401

most similar to how uncertainties are calculated in the RooUnfolded result. The ratios are consistent with unity within the402

uncertainty, which shows that the MultiFolded result agrees with the RooUnfolded result as expected and serves as another403

proof that MultiFold works.404

Figure 16. (Top) Jet mass distributions unfolded with MultiFold (red), compared with previously published
STAR measurement unfolded with RooUnfold (black), for three different jet pT ranges. The error bands include
both statistical and systematic uncertainties. (Bottom) MultiFolded distributions dividing by RooUnfolded
distributions. The error bands include only the uncorrelated systematic uncertainties.

Figure 17 shows the uncertainty breakdown of the fully corrected jet mass for 20 < pT < 25 GeV/c, 25 < pT < 30 GeV/c and405

30 < pT < 40 GeV/c.

Figure 17. Uncertainty breakdown of the fully corrected jet mass for 20 < pT < 25 GeV/c, 25 < pT < 30
GeV/c and 30 < pT < 40 GeV/c, from the left to the right

406
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6.2. Jet charge vs mass. As promised earlier, MultiFold naturally keeps the correlation between the jet observables from the407

raw data level. Figure 18 shows the correlation between jet mass and charge Qκ=2 for 20 < pT < 30 GeV/c and 30 < pT < 50408

GeV/c. The normalization of the 2D histograms is done per column, namely, the color of each bin indicates the number of jets409

that fall into that bin dividing by the total number of jets that fall into the entire column. The red error bars are widths of jet410

mass distributions for each charge bin. Again, for the systematic uncertainties for the MultiFolded result, Method 1 of 5.3 and411

Method 0 of 5.4 are applied. We observe that jet M increases with decreasing jet |Q|, and a few factors can contribute to this412

trend.413

Figure 18. Fully corrected jet mass vs charge correlation for two different jet pT ranges. The normalization of
the 2D histograms is done per column.

• Since quarks are electrically charged while gluons are not, lower |Q| jets are slightly more likely to be gluon-dominated414

and thus have on average a larger M . However, in the particle-level PYTHIA jet sample, we are also able to see this415

trend (although weaker) in pure quark jets, and that a cut on Q does not change the quark-gluon fraction of the jet416

sample by much. We discuss our findings with MC studies in 6.2.1.417

• The peak in jet Q distribution around 0 could be related to local charge conservation during the hadronization process.418

This can be further explored in other observables, such as the charge correlator ratio rc.419

• There is correlation between M and Q due to their common dependence on jet and constituent pT by definition.420

Both M and Q are closely related to the generalized angularity, a class of jet substructure observables defined as421

(19) λκ
β =

1

(pTjet)κ

∑
i∈jet

(
∆Ri

R

)β

· (pTi)
κ

Specifically, λ1
2 is closely related to the jet mass M .422

(20) M = pTjet

√
λ1
2 =

√√√√pTjet

∑
i∈jet

(
∆Ri

R

)2

· pTi

and λ2
1 has a similar form as Q.423

(21) Qκ=2 =
1

p2Tjet

∑
i∈jet

qi · p2Ti

Figure 19 shows the projection of the 2D M vs Q correlation plot onto the M axis for |Q| < 0.15 (green) and |Q| > 0.15 (blue),424

compared with descriptions from event generators, PYTHIA8 (Detroit tune, shown in solid lines) and HERWIG7 (LHC-UE-EE-425

4-CTEQ6L1 tune, shown in dashed lines). The error bands on data include both systematic and statistical uncertainties. The426

error bars on the generator curves include only statistical uncertainties and can be reduced in the future. We observe the mean427

and spread of the jet mass distributions both increase with decreasing jet |Q|, and that our data is well-described by PYTHIA8428

while the M distribution for large |Q| is significantly under-predicted by HERWIG7.429

Figure 20 shows the uncertainty breakdown of the fully corrected jet mass vs charge for 20 < pT < 30 GeV/c and 30 < pT < 50430

GeV/c.431

6.2.1. MC studies. Our very initial MC study of the M vs Q correlation is from PYTHIA8 pp 500 GeV, anti-kT R = 0.4432

charged jets, with pT > 20 GeV/c, shown in Figure 21. The normalization is again done per column, as in Fig. 18. Although433

it has been shown that jet charge observables with different κ-values are strongly correlated with one another [paper that we434

read for Alba’s journal club], we observe that κ = 2 gives us an enhanced correlation between M and Q. We investigate this435

correlation further to see if this can facilitate separation of quark vs gluon jets.436
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Figure 19. Projection of the 2D M vs Q correlation plot onto the M axis for |Q| < 0.15 (green) and |Q| > 0.15
(blue), compared with descriptions from event generators, PYTHIA8 (Detroit tune, shown in solid lines) and
HERWIG7 (LHC-UE-EE-4-CTEQ6L1 tune, shown in dashed lines)

Figure 20. Uncertainty breakdown of the fully corrected jet mass for 20 < pT < 30 GeV/c and 30 < pT < 50
GeV/c, from the left to the right. Top row is for |Q| < 0.15 and bottom row is for |Q| > 0.15.

Figure 21. Jet mass vs charge correlation for various κ values, from PYTHIA8 pp 500 GeV, anti-kT R = 0.4
charged jets, with pT > 20 GeV/c. The normalization of the 2D histograms is done per column.

Figure 22 shows the gluon jet fraction for different selections of jet M , Q, and pT, from PYTHIA8 pp 200 GeV, anti-kT437

R = 0.4 full jets. Identification of jet flavor is done with the following procedure:438
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• obtain a list of outgoing partons439

• obtain a list of jets, sorted from the highest pT440

• for each outgoing parton, find the ∆R between the parton and a jet from the jet list441

– If ∆R < 0.4, declare that jet to come from that outgoing parton, and remove the jet from the jet list. Move onto442

the next parton in the outgoing parton list443

– If ∆R > 0.4, move onto the next jet in the jet list444

Figure 22. Gluon jet fraction for different selections of jet M , Q, and pT, from PYTHIA8 pp 200 GeV, anti-kT
R = 0.4 full jets.

From the simulation, we observe that the quark fraction for jets in 20 < pT < 30 GeV/c is about 65%. To select a jet445

population with a quark fraction of 91%, we can apply a cut of M < 4 GeV/c2, and still have a lot of statistics. However, this446

is more challenging with selecting a population with a large gluon fraction, and a simultaneous cut on M and Q shows a better447

prospect than a cut on either variable.448

To obtain a population with gluon fraction of about 67% for jets in 20 < pT < 30 GeV/c, we can:449

• select on M > 8.6 GeV/c2, and arrive at 0.8% of the statistics;450

• or select on M > 7 GeV/c2 and −0.025 < Q < 0, and arrive at 1.1% of the statistics.451

To obtain a population with gluon fraction of about 65% for jets in 30 < pT < 50 GeV/c, we can:452

• select on M > 9 GeV/c2 and −0.08 < Q < −0.01, and also arrive at 1.1% of the statistics.453

• No cut on M or Q alone can achieve such purity.454

Similar exercise is done on pp 500 GeV simulations and we find that to obtain a population with gluon fraction of about 72%455

for jets in 20 < pT < 30 GeV/c, we can:456

• select on M > 8 GeV/c2, and arrive at 4% of the statistics;457

• or select on M > 7 GeV/c2 and |Q| < 0.05, and arrive at 8% of the statistics.458

These studies show the potential of achieving a relatively high gluon purity with a simultaneous selection of M and Q.459

However, as these selections inherently introduce fragmentation bias, they cannot be used to study the differences between quark460

and gluon fragmentation in an unbiased manner.461

To investigate if the trend we observe in data in Fig. 18 is related to the flavor of the jet, we study the correlation with quark462

jets in PYTHIA, as shown in Figure 23. Since we are also able to observe the same trend that jet M increases with decreasing463

jet |Q|, although weaker, in pure quark jets, this pattern cannot be entirely attributed to the quark-gluon ratio argument.464

Figure 23. (Left) jet mass vs charge correlation for pure quark jets in PYTHIA. (Right) projection of the 2D
M vs Q correlation plot onto the M axis for |Q| < 0.15 and |Q| > 0.15 for pure quark jets in PYTHIA.
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6.3. Correlations between each pair of substructure observables. In addition to the correlation shown in Section 6.2,465

Figure 24 shows the fully corrected correlations between each pair of unfolded substructure observables for jets with 20 < pT < 30466

GeV/c. Similar to Fig. 18, the normalization of each 2D histogram is done per column, and the red curves indicate the mean467

values with the error bars indicating the spread of the distributions. Perhaps some of the correlations shown here would be468

interesting to explore in a future study.469

Figure 24. Fully corrected correlations between each pair of unfolded substructure observables for jets with
20 < pT < 30 GeV/c. The normalization of each 2D histogram is done per column.

6.4. CollinearDrop jet mass. Figure 25 shows the distribution of fully corrected CollinearDrop groomed jet masses for jets470

within 20 < pT < 30 GeV/c. This measurement excludes jets with M = Mg (46% of jets in this pT range) so that the peak in471

the small but nonzero ∆M region is visible. The M = Mg case corresponds to the jets whose first splittings pass the criterion472

of (zcut, β) = (0.1, 0) without the need of SoftDrop grooming, because the lower-pT prong of the splitting carries at least 10% of473

the total jet pT. Both PYTHIA8 Detroit tune [26] and HERWIG7 7.2-Default tune [27] capture the qualitative trend of data,474

although there is some tension with HERWIG in the small ∆M region.475

Figure 26 shows the breakdown of systematic uncertainties of the measurement. Method 1 of 5.4 is used for estimation of the476

uncertainty.477

Figure 27 shows a different representation of the fully corrected CollinearDrop groomed jet mass for jets with 20 < pT < 30478

GeV/c and 30 < pT < 50 GeV/c. This measurement is corrected with the 2021 embedding. Systematic uncertainties are treated479

with Methods 2 of Sections 5.3 and 5.4. (See Figure 28 for the breakdown of these uncertainties for jets with 20 < pT < 30 GeV/c.)480

Analytic calculation with NLL SCET performed at the parton level shows deviation from both event generator predictions and481

data, indicating that the CollinearDrop groomed mass is sensitive to hadronization effects. This is verified by the comparison482

in Figure 29, where better agreement is seen between the analytic calculation with PYTHIA with hadronization off. The error483

band on the theoretical curve indicates typical scale variations in theoretical calculation.484

Figure 30 is the same as Fig. 27 except that the data are unfolded with the 2015 embedding. The uncertainties are larger485

compared to the results in Sections 6.1 and 6.2 because of different treatment of systematics. (Methods 2 of Sections 5.3 and 5.4486

are used in this case). They are also higher compared to Fig. 27 because the 2015 embedding has much lower statistics for jets.487

See Figure 28 for the breakdown of these uncertainties for jets with 20 < pT < 30 GeV/c.488
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Figure 25. CollinearDrop jet measurement, compared with PYTHIA and HERWIG predictions.

Figure 26. Relative uncertainty for the measurement of a.

Figure 27. CollinearDrop jet log(a) measurement, corrected with 2021 embedding, compared with PYTHIA
and HERWIG predictions and SCET calculation
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Figure 28. Uncertainty estimate for the CollinearDrop jet log(a) measurement, corrected with 2021 embedding

Figure 29. CollinearDrop jet log(a) at the parton level.

Figure 30. CollinearDrop jet log(a) measurement, corrected with 2015 embedding, compared with PYTHIA
and HERWIG predictions and SCET calculation.

Figure 31. Uncertainty estimate for the CollinearDrop jet log(a) measurement, corrected with 2015 embedding.
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6.4.1. MC studies. Figure 32 shows the a distribution for PYTHIA8 quark jets and gluon jets separately, compared with the489

measurement in Fig. 25. We observe that gluon jets have a higher value of a on average, which indicates that they tend to have490

more nonperturbative soft and wide-angle radiation at the early stage of the parton shower. The quark jet distribution is closer491

to our inclusive measurement, which can be explained by the high quark jet fraction for this kinematic selection of jets.492

Figure 32. CollinearDrop a distribution for quark vs gluon jets in PYTHIA (without π0 decays), compared
with the fully corrected measurement

Figure 33 shows the log(a) distributions for different zcut selections, from HERWIG simulations. This shows that the493

CollinearDrop groomed mass can be influenced by the grooming criteria used.494

Figure 33. log(a) distributions for zcut of 0.3, 0.1 and 0.05, from PYTHIA8 simulations.

Figure 34 shows the log(a) distributions for two pT ranges with different
√
s for collision energies, simulated with PYTHIA8.495

We see that log(a) has a little dependence on
√
s.496

Figure 34. log(a) distributions for collision energies of 200 and 500 GeV, from PYTHIA8 simulations.



ANALYSIS NOTE: JET SUBSTRUCTURES WITH MULTIFOLD 23

6.5. CollinearDrop jet mass vs Rg or zg. Figure 35 (left) shows the correlation between the CollinearDrop groomed mass497

fraction ∆M/M and the SoftDrop groomed jet opening angle Rg. The jet population with M = Mg has been separated out498

into the leftmost column. For the M > Mg panel, a diagonal trend that indicates an anti-correlation between the amount499

of soft radiation and the hard splitting angle is observed, consistent with the expectation of angular ordering of the parton500

shower. Figure 35 (right) shows the projection of ∆M/M for different selections of Rg. Method 1 of 5.4 is used for systematic501

uncertainty estimation. We observe that, as shown in the blue data points, a selection on small Rg results in a relatively wide502

∆M/M , suggesting that a small SoftDrop groomed jet radius appears with a wide range of SoftDrop grooming. On the other503

hand, as shown in the orange data points, a selection on large Rg results in a sharper ∆M/M peaked towards small ∆M/M504

values, suggesting that a large SoftDrop groomed jet radius leaves space for little or no SoftDrop grooming. This measurement505

demonstrates how early soft wide-angle radiation constrains the angular phase space of later splittings. PYTHIA and HERWIG506

predictions, as indicated by the solid and dashed lines, describe the trends of the data.507

Figure 35. Correlation between the CollinearDrop groomed mass fraction ∆M/M and the SoftDrop groomed
jet opening angle Rg. Correction is done with the 2015 embedding.

Figure 36 shows the correlation between ∆M/M and the SoftDrop groomed shared momentum fraction zg. We observe that the508

more fractional mass that is groomed away by SoftDrop, the flatter the zg distribution is. Since the perturbative DGLAP splitting509

function follows the 1/z behavior [1–3], a more steeply falling zg with small ∆M indicates a larger perturbative contribution.510

This measurement demonstrates how an early-stage emission constrains the momentum imbalance of a later splitting. Again,511

PYTHIA and HERWIG are able to describe the data.512

Figure 36. Correlation between the CollinearDrop groomed mass fraction ∆M/M and the SoftDrop groomed
jet opening angle zg. Correction is done with the 2015 embedding.
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6.5.1. Hadronization effect. To make inference between early time and late time radiation in the parton shower, we confirm that513

effects of hadronization is suppressed in our correlation measurements. With PYTHIA8 Detroit tune, we compare the correlations514

with and without hadronization turned on. Figure 37 shows that hadronization only smears or shifts the distributions, but the515

soft-hard correlation with and without hadronization is the same. The different cuts for ∆M/M for the zg take into account516

that a much larger fraction of jets have identically zero CollinearDrop mass without hadronization, as shown in Fig. 38.517

Figure 37. Correlation between the CollinearDrop groomed mass fraction ∆M/M and Rg or zg, with and
without hadronization, from PYTHIA simulations.

Figure 38. CollinearDrop ∆M/M distributions, with and without hadronization, from PYTHIA simulations.
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6.5.2. Switching from ∆M/M to a in 2D plots. In this subsection, we use the 2021 embedding for corrections, and systematic518

uncertainties are treated with Methods 2 of Sections 5.3 and 5.4. Just as in Fig. 35, we see that when the π0 decays at the519

truth-level are enabled, as in Figure 39, there is also a significant anti-correlation between ∆M/M and Rg. However, it is less520

significant between (1) a and Rg or (2) log(a) and Rg or (3) log(a · p2T) and Rg.521

Figure 39. Fully corrected correlations between ∆M/M and Rg and between a-related observables and Rg.
Correction is done with the 2021 embedding.

First, we confirmed that the correlation between the mean values of ∆M/M and log(a) is significant. See Figure 40. Note, for522

a given value of ∆M/M (log(a)), the distribution of log(a) (∆M/M) is spread out, meaning that the strong correlation between523

∆M/M and Rg might not carry on to a and Rg. More concretely, for ∆M/M > 0.7, we have Rg < 0.1 on average according524

to Figure 39. In Figure 40, the cells with ∆M/M > 0.7 that are reddest have −2 < log(a) < −1.25. However, if we select on525

−2 < log(a) < −1.25, the average ∆M/M ≈ 0.4, corresponding to Rg ≈ 0.15.526

Figure 40. Fully corrected correlation between ∆M/M and log(a). Correction is done with the 2021 embedding.

We try to understand the turnover behavior of mean Rg value at around log(a) ≈ −2.75. Below log(a) ≈ −2.75, Rg increases527

with log(a), as shown in Fig. 39. This region is dominated by jets with small values of M ≈ Mg. See Figure 41. The low Rg528

values and their relative narrow widths (indicated by the size of the vertical error bars) arise from the phase space restriction529

posed by the low-virtuality shower-initiating parton.530
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Figure 41. Fully corrected correlation between M(g) and log(a). Correction is done with the 2021 embedding.

6.5.3. Effect of different zcut values. To further understand the turnover behavior of mean Rg value at around log(a) ≈ −2.75531

and what affects it, we study the correlations with various the zcut values. With HERWIG simulations (decays of π0 turned on),532

we select jets with 20 < pT < 30 GeV/c, and plot their correlation of Rg vs log(a), the same way as in the bottom middle plot of533

Fig. 39. Figure 42 shows the correlation for zcut = 0.05, 0.1, 0.3. We observe that zcut affects both the location of the turnover534

and the mean values of the Rg plateau after the turnover.535

Figure 42. Correlation between Rg and log(a), with various zcut values for SoftDrop criteria, from HERWIG
jets with 20 < pT < 30 GeV/c (with decays of π0 enabled, same as the 2021 embedding).
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6.5.4. Testing the angular ordering statement. In this subsection, we investigate if our observation of the anti-correlation between536

∆M/M and Rg in Fig. 35 can prove the angular ordering of the parton shower. With simulations, we first create a sample of537

jets where angular ordering (AO) is expected. Then we manually break the AO in the simulations, and study if the behavior of538

jet substructure observable correlations changes.539

For the baseline, we first generate 200 GeV pp collisions with HERWIG event generator (with decays of π0 turned off), run540

the usual anti-kT algorithm with R = 0.4 to cluster the particles into jets, and run SoftDrop with the usual grooming criteria of541

(zcut, β) = (0.1, 0). We expect AO to hold in this case, since HERWIG uses an angular ordered parton shower.542

For the random ordering toy model, the setup is as follows. We modify the HERWIG baseline such that, in each jet,543

• for each jet constituent, keep (η, ϕ) the same, but randomize its pTby reassigning it the pT of a constituent in the same544

jet;545

• recluster the modified constituents into the same jet;546

• and run the usual SoftDrop criteria.547

With this procedure, for each jet, pT is roughly unchanged. Jet constituent multiplicity and spectrum are also identical to the548

usual case.549

For the thermal toy model, we first select the baseline events that contain at least one jet above pT of 15 GeV/c, and fit a550

piece-wise function for the spectrum of all the particles in such events, as shown in Figure 43. Then we551

• generate particles from a “thermal event” by sampling from the fit;552

• determine the event multiplicity for each event by sampling from a Gaussian with a mean of 100 and width of 10;553

• cluster the particles into jets as usual;554

• and run the usual SoftDrop criteria.555

Figure 44 shows that with this procedure, we are able to replicate a roughly similar jet pT spectrum and jet multiplicity556

distribution (left and middle plots, both in green), compared to the baselines (left and middle plots, blue). The jet constituent557

spectrum from the thermal toy events (right plot, blue) is less similar to the baseline case (right plot, black). Also shown in Fig.558

44 is the jet pT and multiplicity distributions (left and middle plots, orange) where the procedure of generating the thermal events559

is the same, except that the event multiplicity is sampled from a Gaussian with a mean of 80 and width of 10. Although this560

variation does not affect the distributions significantly, it does not replicate the baseline distributions as well as the configuration561

with the mean of 100 does, so we will use the latter for further studies in the following.562

Figure 43. Spectrum and a fit of particles from HERWIG events that contain a jet.

Figure 44. Jet pT, multiplicity, and jet constituent pT distributions in the thermal toy model, compared with
the baseline.

We observe that in general, less grooming happened in the toy models. Specifically, the fraction of jets in 20 < pT < 30 GeV/c563

that has nothing removed by SoftDrop (M = Mg case) is 73% in the random ordering model, 65% in the thermal toy model,564
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as compared to 54% in the baseline case. This makes sense because it is less likely for jets to have wide-angle soft radiation by565

setup. However, when grooming does happen, as seen in the distributions of the CollinearDrop groomed log(a) for jets from the566

baseline, random ordering model, and thermal toy model, in Figure 45, we observe that there is more mass groomed away in the567

random ordering case, and less mass groomed away in the thermal toy case. The former is likely due to the removal of wide-angle568

particles that have an intermediate pT (about 2 GeV/c) and almost pass the zcut of 0.1, in the random ordering model; the569

latter is likely due to the excess of very soft (less than 1 GeV/c) particles, in the thermal model, as seen in the leftmost bin of570

the right plot in Fig. 44.571

Figure 45. CollinearDrop groomed log(a) for jets from the baseline, random ordering model, and thermal toy model.

Figures 46 and 47 show respectively the analogs of Figs. 39 (lower middle panel) and 35. The similar qualitative behaviors in572

these toy models suggest that the anti-correlation between Rg and ∆M/M (or log(a) in the large log(a) region) might not be573

due to AO. We consider the possibility that the anti-correlation arises from our choice of jet finding algorithm.574

Figure 46. Correlations between the CollinearDrop groomed mass log(a) and Rg, in toy models compared
with the HERWIG baseline.

Figure 47. Correlations between the CollinearDrop groomed mass fraction ∆M/M and Rg, in toy models
compared with the HERWIG baseline.
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6.5.5. Effect of different jet finding algorithms. In this subsection, we study if (and how) the choice of jet finding algorithms575

affect the distributions and correlations of jet substructure observables.576

Figure 48 shows the distributions of log(a), M , Rg, zg and Mg for jets within 20 < pT < 30 GeV/c, in HERWIG or thermal577

toy model events, clustered with the anti-kT or kT algorithm. We observe that the choice of jet finding algorithm affects the578

substructure observables (especially Rg) more, compared to whether the jets are from a physical event or a thermal toy model579

event.580

Figure 48. Distributions of log(a), M , Rg, zg and Mg for jets within 20 < pT < 30 GeV/c, in HERWIG or
thermal toy model events, clustered with the anti-kT or kT algorithm.

Figure 49 shows the correlation between Rg and log(a) for the kT jets. We observe that the anti-correlation between the two581

observables in the large log(a) region is broken significantly, as compared to the correlations in Fig. 46, where anti-kT algorithm582

is used in either HERWIG or the toy models.583

Figure 49. Correlations between log(a) and Rg, in HERWIG events clustered with the kT algorithm.

These qualitative differences between HERWIG jets clustered with anti-kT and kT algorithms as seen in Figs 48 and 49584

indicates that jet substructure observables built using algorithmic procedures including might be susceptible to reconstruction585

biases in certain segments of the observable phase-space.586
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6.6. CollinearDrop jet mass vs Rg and zg. Figure 50 shows the correlation between a and the SoftDrop groomed shared587

momentum fraction zg and the SoftDrop groomed jet radius Rg in 20 < pT < 30 GeV/c, where the average value of the588

CollinearDrop groomed jet mass is indicated by the color of each bin in the zg − Rg plane. The M = Mg jets are included in589

this plot. This plane captures the Lund Plane of the first groomed splitting. We see that a is strongly correlated with Rg while590

weakly correlated with zg.591

Also shown in Fig. 50 is curves of constant formation time t, which approximates the time it takes for a parton to radiate a592

gluon [17]. It is related to other parton kinematic variables by:593

(22) t =
1

2Ez(1− z)(1− cos(θ))
,

where E is the energy of the parent parton, z is the momentum fraction carried by the lower-pT daughter parton, and θ is the594

opening angle between the two daughter. E can be approximated by the jet pT; for a perturbative hard splitting, z and θ can595

be approximated by the SoftDrop zg and Rg, respectively [11]. We obtain the curves shown by replacing the parton variables596

in Eq. 22 with their (SoftDrop) jet counterparts, so t can be interpreted as the time that the first hard splitting to pass the597

SoftDrop criterion takes to develop. The strong correlation between a and Rg can therefore be understood as how the amount598

of early-stage radiation affects when the hard splitting happens. Specifically, to shed a significant amount of mass at the early599

stage of the parton shower, which is predominantly done via soft gluon radiation, the hard splitting needs to happen relatively600

late on average.601

It is worth emphasizing that the measurement shown Fig. 50 showcases the power of MultiFold, which enabled us to make602

selections in three variables, pT, zg and Rg, and study a fourth one a which itself is composite of a few variables; all of these603

observables have been fully corrected for detector effects.604

Figure 50. CollinearDrop groomed mass as a function of zg −Rg. Correction is done with the 2021 embedding.

Figure 51 shows the log(a) distributions for specific regions of the zg − Rg plane. The leftmost bin includes the a = 0 jets,605

which do not have anything removed by SoftDrop and are therefore possibly dominated by jets whose first splittings in the parton606

shower are already perturbative. Region 3 (0.15 < Rg < 0.25 and 0.1 < zg < 0.2) includes asymmetric and intermediate-angle607

splittings while Region 2 (0.15 < Rg < 0.25 and 0.4 < zg < 0.5) includes symmetric and intermediate-angle splittings. Despite608

the different zg selections, the fraction of a = 0 jets and the distributions in a > 0 are similar. The weak dependence of a on zg609

is consistent with our observation made for Fig. 50.610

However, as we continue to scan across the plane, we notice drastic changes in the fraction of jets with a = 0 as well as611

differences in shape in the a > 0 region. We first move onto Region 1 (0 < Rg < 0.1 and 0.4 < zg < 0.5), which includes612

symmetric and collinear radiation. Fig. 51 also shows that, compared to Regions 2 and 3, Region 1 is more likely to have soft613

radiation groomed away by SoftDrop as indicated by the decreased count for a = 0, and has a broader tail for the small but614

nonzero a region. On the other hand, we observe from Fig. 50 that we have on average higher values of a in this region, which615

can be understood as mostly affected by the slightly higher values in log(a) > −1.5. The distribution of log(a) is wider in both616

directions arises from that a selection of narrow hard splitting opens up a large phase space for the amount of radiation preceding617

the splitting.618

Region 4 (0.3 < Rg < 0.4 and 0.1 < zg < 0.2) includes asymmetric and wide-angle splittings, characteristic of perturbative619

early emissions. Again compared to Regions 2 and 3, in Region 4, the significant fraction of a = 0 jets indicates that it is highly620

probable that no non-perturbative early emission has happened before the perturbative emission. This is likely the explanation621

for why the z-axis values are also close to 0 in this region in Fig. 50.622

Figure 52 shows the similar distribution as Fig. 50, from jets in PYTHIA8 (left) and HERWIG7 (right). Note that the decays623

of π0 are not enabled in these simulations.624

Figure 53 shows the similar distributions as Fig. 51, from jets in PYTHIA8 (left) and HERWIG7 (right). Note that the625

decays of π0 are not enabled in these simulations.626
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Figure 51. Distribution of log(a) with various selections of Rg and zg. Correction is done with the 2021 embedding.

Figure 52. CollinearDrop groomed mass as a function of zg − Rg, in PYTHIA (left) and HERWIG (right).
The decays of π0 are not enabled.

Figure 53. CollinearDrop groomed mass as a function of zg − Rg, in PYTHIA (left) and HERWIG (right).
The decays of π0 are not enabled.
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Figure 54 shows the similar distributions as Fig. 51, from jets in PYTHIA8 (left), HERWIG7 (middle), and PYTHIA6 (right).627

Note that the decays of π0 are enabled in these simulations. PYTHIA6 here is from the truth distribution of the 2021 embedding.628

Figure 54. CollinearDrop groomed mass as a function of zg −Rg, in PYTHIA8 (left) and HERWIG (middle)
and PYTHIA6 (right). The decays of π0 are enabled.

7. Conclusions629

Our paper plots include Figs 27, 50 and 51, discussed in Sections 6.4 and 6.6. In this analysis note, we complement630

the paper titled by providing more details on MultiFold, a machine learning driven method used for unfolding. We discuss the631

mechanism and the specific application of it to our analyses, including the procedures to estimate the systematic uncertainties.632

In addition, the closure test performances and comparison with previously published results on jet mass corrected with an633

alternative method establish confidence for further application on substructure correlation studies.634

We also present results that are not shown in the paper. These results are fully corrected for detector effects with MultiFold.635

The correlation between the jet mass and jet charge shows that jets with a higher mass tend to have a lower |Q|. This study636

also inspires us to consider fragmentation biases when trying to identify jets initiated by a parton of a specific flavor, as well637

as how it can be affected by local charge conservation arising from the string breaking mechanism. These provide avenues for638

future studies.639

The correlations between the CollinearDrop groomed jet mass with SoftDrop groomed observables demonstrate how the640

early-time soft and wide-angle radiation affects the kinematics of the later-stage perturbative splitting. In particular, from the641

investigation of the correlation between the CollinearDrop groomed mass a and the SoftDrop groomed observables zg and Rg, we642

observe that on average, a large early-time radiation biases the perturbative splitting to happen late. We also observed a strong643

correlation between the amount of early-stage radiation and the angular scale of a later-stage splitting. We carry out studies644

in simulations varying the effects of hadronization, angular ordering and the choice of jet finding algorithm, to investigate the645

origin of the anti-correlation between the CollinearDrop groomed mass and Rg.646
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