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Jets are collimated sprays of final-state particles produced from initial high-momentum-transfer4

partonic scatterings in particle collisions. Substructure variables aim to reveal details of the parton5

fragmentation and hadronization processes that create a jet. By removing collinear radiation while6

retaining most of the low-momentum (soft) radiation components of the jet, one can construct7

CollinearDrop jet observables, which have enhanced sensitivity to the soft phase space within jets.8

With data collected with the STAR detector, we present the first CollinearDrop jet measurement,9

corrected for detector effects with a machine learning method, MultiFold, and its correlation with10

SoftDrop groomed jet observables. We observe that the amount of grooming affects the angular11

and momentum scales of the first hard splitting of the jet and is related to the formation time of12

such splitting. These measurements indicate that the non-perturbative Quantum Chromodynamics13

effects are strongly correlated with the perturbative fragmentation process.14

Introduction High-energy particle collisions provide op-15

portunities to study experimentally quarks and gluons16

(partons), the fundamental degree of freedom in the17

theory of Quantum Chromodynamics (QCD). In some18

of these collisions, incoming partons interact with each19

other through the exchange of a high-momentum virtual20

particle, producing outgoing partons with high transverse21

momentum (pT). Such outgoing partons are also highly22

virtual and will undergo a series of processes of gluon ra-23

diation and quark-antiquark splitting, as they come on24

mass shell. This process is called the parton shower, and25

can be described perturbatively in terms of the Dok-26

shitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evo-27

lution equations [1–3]. When the virtuality of the partons28

is comparable to the confinement scale ΛQCD, the non-29

perturbative transition to baryons and mesons (hadrons),30

known as hadronization, begins. Experimentally, the31

spray of the final-state hadrons can be measured and32

clustered into jets. Jets reconstructed with a clustering33

algorithm [4] can serve as a proxy for the kinematics of34

the outgoing partons.35

While the interaction among partons can be well36

understood with the principles of perturbative QCD37

(pQCD), the non-perturbative components of the parton38

shower (e.g. soft gluon emission [5], [6]) and hadroniza-39

tion remain challenging for theoretical calculations and40

rely mostly on phenomenological models in Monte Carlo41

event generators. Measurements of observables sensitive42

to such non-perturbative QCD (npQCD) effects will pro-43

vide important tests for the theories and constraints on44

the models. Together with studies of observables cal-45

culable from pQCD, investigation of those sensitive to46

npQCD effects offers an avenue for a comprehensive un-47

derstanding of the full parton-to-hadron evolution pic-48

ture.49

Beyond the jet pT, or other combinations of the jet50

four-momentum observables, jet substructure observ-51

ables [7] are useful tools that can provide insight into the52

parton shower and hadronization processes. To enhance53

the pQCD contributions in jet, SoftDrop [8] grooming54

is often used to remove wide-angle soft radiation within55

the jet. The procedure, detailed in Ref. [8], starts by re-56

clustering the jet with an angular-ordered sequential re-57

combination algorithm called Cambridge/Aachen [9, 10].58

Then the last step of the clustering is undone and the59

softer prong is removed until the SoftDrop condition is60

satisfied:61

z =
min(pT,1, pT,2)

pT,1 + pT,2
> zcut(R/Rjet)

β (1)62

where zcut is the SoftDrop momentum fraction thresh-63

old, β is an angular exponent, Rjet is the jet resolution64

parameter, pT,1,2 are the transverse momenta of the two65

prongs that constitute a subjet, and R is defined as66

R =
√
(y1 − y2)2 + (ϕ1 − ϕ2)2 (2)67

with y1,2 and ϕ1,2 being the rapidities and azimuthal an-68

gles of the two prongs, respectively.69

z and R describe the momentum fraction and the70

opening angle of the subjet, respectively. They are sub-71

scripted “g” when the subjet passes the SoftDrop condi-72

tion Eq. 1 and the procedure stops.73

Although the SoftDrop groomed jet substructure ob-74

servables have been extensively studied both experimen-75

tally [11–16] and theoretically [17], the wide-angle and76

soft radiation which are dominated by npQCD processes,77

have not yet been explored in detail.78

One set of observables that are sensitive to the soft79

wide-angle radiation are known as CollinearDrop [18].80

The general case involves the difference of two differ-81

ent SoftDrop selections SD1 = (zcut,1, β1) and SD2 =82

(zcut,2, β2) on the same jet. For nonzero values of SD183

and SD2 parameters with zcut,1 ≤ zcut,2 and β1 ≥ β2,84

SD1 reduces the wide-angle contributions from initial-85

state radiation (ISR), underlying event (UE) and pileup,86

while removing what is left after applying SD2 also re-87

duces the collinear contributions from fragmentation.88

The CollinearDrop jet mass is defined in terms of the89

jet mass M1, obtained from applying SD1, jet mass M2,90

obtained from applying SD2, and the jet transverse mo-91

mentum pT:92

a =
M2

1 −M2
2

p2T
. (3)93

where jet mass is defined as:94
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M =
∣∣∣∑

i∈jet
pi

∣∣∣ = √
E2 − |p⃗|2 (4)95

where pi is the four-momentum of the ith constituent in96

a jet, and E and p⃗ are the energy and three-momentum97

vector of the jet, respectively. a is calculable in Soft98

Collinear Effective Field Theory (SCET) at the parton99

level [18].100

As the QCD parton shower is angular ordered [19], the101

soft wide-angle radiation captured by the CollinearDrop102

jet observables happens on average at an early stage of103

the shower. Unlike CollinearDrop, SoftDrop then cap-104

tures the late stage collinear and perturbative splittings.105

Therefore, a simultaneous measurement of CollinearDrop106

jet and SoftDrop jet observables can help illustrate how107

the different stages of the parton shower are correlated.108

Note that both the CollinearDrop and SoftDrop observ-109

ables also could be sensitive to hadronization effects.110

However, simulations from Monte Carlo event genera-111

tors show that the correlations between them are robust112

against such effects.113

In this paper, we present measurements of the114

CollinearDrop groomed jet mass, to study the less-115

explored phase space of soft and wide-angle radiation;116

we also measure the correlation of the CollinearDrop117

groomed mass with the SoftDrop observables Rg and zg,118

in pp collisions at
√
s = 200 GeV at STAR. One no-119

table feature of these measurements is that they are fully120

corrected for detector effects with MultiFold, a novel ma-121

chine learning method which preserves the correlations in122

the multi-dimensional observable phase space on a jet-by-123

jet basis [20]. We then compare our fully corrected mea-124

surements with predictions from event generators and an-125

alytical calculations done in the SCET framework.126

Analysis details The STAR experiment [21] recorded127

data from
√
s = 200 GeV pp collisions during the 2012128

RHIC run. As energetic charged particles travel from the129

interaction point to the perimeter of the Time Projection130

Chamber (TPC), they ionize the gas atoms in the TPC131

and leave hits, from which we reconstruct tracks. Neu-132

tral particles do not interact with the gas in the TPC and133

instead deposit their energy through the development134

of electromagnetic showers in Barrel Electro-Magnetic135

Calorimeter (BEMC) towers. Both the TPC and BEMC136

have a coverage of |η| < 1 and full azimuth. Events137

are required to pass the jet patch trigger with a mini-138

mum transverse energy ET > 7.3 GeV be deposited in a139

1× 1 patch in η× ϕ in the BEMC. Before any run selec-140

tions, 65M events pass this trigger selection, correspond-141

ing to an integrated luminosity of 23 pb−1. In addition,142

events are required to have primary vertices within ±30143

cm from the center of the detector along the beam axis.144

We apply a 100% hadronic correction to tower energy145

measurement: if a charged track extrapolates to a tower,146

then the whole track’s pT is removed from the tower ET;147

if the track pT is greater than the tower ET, then the148

tower is removed completely. The same track and tower149

selections are applied as in Ref. [13] and [16]. We re-150

construct jets from TPC tracks (0.2 < pT < 30 GeV/c,151

with a charged pion mass assignment) and BEMC towers152

(0.2 < ET < 30 GeV, assuming massless) using the anti-153

kT sequential recombination clustering algorithm [4] with154

a resolution parameter of R = 0.4. We apply the selec-155

tions of pTjet > 15 GeV/c, |ηjet| < 0.6, transverse energy156

fraction of all neutral components < 0.9, and Mjet > 1157

GeV/c2 on reconstructed jets, consistent with the selec-158

tions in Ref. [16]. Similar to Ref. [13] and [16], no159

background subtraction is done, because the UE contri-160

bution to jets is low for STAR kinematics and unfolding161

can correct for any fluctuation in it. Specifically, the162

contribution of UE to jet pT for a jet with 20 < pT < 25163

GeV/c is less than 1% [22].164

Because of the insignificant contributions from UE,165

ISR and pileup to the events in our analysis, we are166

able to set the less aggressive grooming criterion SD1167

to no grooming. We use SD1 = (zcut,1, β1) = (0, 0) and168

SD2 = (zcut,2, β2) = (0.1, 0). This reduces M1 to the un-169

groomed jet mass M and we denote M2 as the SoftDrop170

groomed jet mass Mg.171

We measure the following jet observables: pT, zg, Rg,172

M , Mg, and jet charge Qκ=2. Qκ=2 is defined as:173

Qκ=2 =
1

p2Tjet

∑
i∈jet

qi · p2Ti
, (5)174

where qi and pTi
are the electric charge and pT of the ith175

jet constituent, respectively, and pTjet is the transverse176

momentum of the jet.177

Experimentally, jet measurements need to be corrected178

for detector effects to compare with theoretical calcula-179

tions and model predictions. The traditional correction180

procedure uses Bayesian inference in as many as three di-181

mensions and requires the observables to be binned based182

on the resolution [23]. On the other hand, MultiFold is183

a machine learning technique that is able to correct data184

at a higher dimensionality in an un-binned fashion. As it185

preserves the correlation between the input and corrected186

observables across dimensionality, MultiFold is desirable187

for this study.188

We fully corrected six jet observables simultaneously189

for detector effects using MultiFold. In addition to jets190

from data, matched pairs of jets from simulations with191

(detector-level) and without (particle-level) detector ef-192

fects are input for MultiFold. The particle-level prior193

used for unfolding is jets from events generated with194

PYTHIA6 [24] with the STAR tune [25]. This is a single-195

parameter modification to the Perugia 2012 tune [26] to196

better match STAR data. Consistent with [Dmitri’s197

paper], at particle-level, hadron weak decays are not en-198

abled while strong and electromagnetic decays are. The199

PYTHIA events are run through GEANT3 [27] simu-200

lation of the STAR detector, and embedded into data201

from zero-bias events from the same run period as the202

analyzed data. The detector-level jets are then recon-203

structed after this embedding procedure. We geometri-204

cally match a detector-level jet to a particle-level jet by205
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requiring ∆R < 0.4 between the two in the same event.206

MultiFold achieves the goal of unfolding through itera-207

tively reweighting the weights assigned to each jet in sim-208

ulations [20]. It is naturally unbinned since these weights209

are per-jet quantities. There are two steps for each iter-210

ation. In the first step, a neural network classifier is211

trained with the binary cross-entropy loss function, to212

distinguish jets from data and jets from the (reweighted)213

detector-level simulation. The input to the neural net-214

work has as many dimensions as the number of jet ob-215

servables of interest (in our case, 6), and the output di-216

mension is 2, each of which represents the probabilities217

that the jet comes from data and from simulation, respec-218

tively. It has been shown in Ref. [28] that, the output of219

such a neural network can be used to estimate a set of new220

weights to apply to the detector-level simulation (possi-221

bly reweighted from the previous iteration). This effec-222

tively allows us to convert a high-dimensional reweighting223

problem to a classification problem. Since the detector-224

level jets and the particle-level jets are matched, these225

weights can be applied to the particle-level jets (possibly226

reweighted from the previous iteration) as well. How-227

ever, due to the stochastic nature of detector response,228

identical particle-level jets are likely to match to differ-229

ent detector-level jets. A second step is then needed to230

convert these “per-instance” [20] (where each instance is231

a detector-level and particle-level pair) weights to a func-232

tion that gives a unique prescription to any particle-level233

jet. These weights obtained from the second step are then234

either applied to the detector-level and particle-level jets235

in the next iteration, or quoted as the final prescription236

to obtain the unfolded jets if it is the last iteration.237

We utilize the default settings of MultiFold as in [20],238

with two dense neural networks, each with three dense239

layers and 100 nodes per layer. We train the neural240

networks with TensorFlow [29] and Keras [30] using the241

Adams optimization algorithm [31]. In addition, we also242

use the default setting for the choice of activation func-243

tions, loss function, fraction of sample size for valida-244

tion, and maximum number of epochs. To prevent over-245

training, an early stopping is implemented after 50 con-246

secutive epochs in which the loss value for the validation247

sample has not improved.248

To correct for fake jets, i.e., detector-level jets arising249

from background, fake rates were obtained from simula-250

tions and used as initial weights for the data as an input251

to MultiFold. For particle-level jets that are missed at de-252

tector level due to effects such as tracking inefficiency, an253

efficiency correction was done post-unfolding in a multi-254

dimensional fashion.255

The correction procedure was validated using a Monte256

Carlo closure test, which showed good performance of257

the unfolding among all observables for jets with 20 <258

pT < 50 GeV/c. In addition, we compared the fully cor-259

rected jet mass distributions for three different pT bins,260

using both MultiFold and RooUnfold [16]. The ratios261

of MultiFold distributions over RooUnfold distributions262

are confirmed to be consistent with unity. These estab-263

lish further confidence in application of MultiFold to the264

data.265

The statistical uncertainty is estimated with the boot-266

strap technique [32]. In particular, 50 pseudo-datasets267

are created and used to repeat the unfolding procedure,268

where each jet from data has been resampled from a Pois-269

son distribution with a mean of 1.270

The sources of systematic uncertainties are variations271

of hadronic correction scale (from 100% to 50%), tower272

energy resolution (varied by 3.8%), tracking efficiency273

(varied by 4%) and unfolding procedure. The first three274

sources are treated in the same way as Ref. [13] and [16].275

The dominant source for systematic uncertainty is the276

variation of unfolding procedure, up to x% in the peak277

region for jets in 20 < pT < 30 GeV/c, and y% for jets in278

30 < pT < 50 GeV/c. The unfolding variation includes279

variation of the prior and random seed. The prior vari-280

ation is accounted for through simultaneous reweighting281

of all six unfolded observables as well as a, based on prior282

distributions from PYTHIA 8.303 with Detroit tune [33]283

and HERWIG 7.2 with Default tune [34]. The varia-284

tion of the random seed affects the initialization of the285

weights of the neural networks, and is accounted for with286

the standard error on the fully corrected result obtained287

from 100 different initial seeds.288

Different from analyses that use RooUnfold, Ref. [13]289

and [16], this analysis does not explicitly account for the290

variation of the number of iterations as a separate source291

of uncertainty. Going to a higher number of iterations292

reduces the prior dependence bias; in fact, mathemat-293

ically, the most correct number of iterations is infinity294

[20]. However, the statistical limitations would introduce295

unwanted fluctuations at such high number of iterations296

[20]. This can manifest through a large uncertainty from297

the variation of initial seeds, as well as the statistical298

uncertainty obtained with the bootstrap technique. The299

deviation of the result due to the inability to perform an300

infinite number of iterations shows up as the prior de-301

pendence. Therefore, the prior variation uncertainty ef-302

fectively accounts for the uncertainty due to the number303

of iterations not being ideal, and the number of iterations304

can be selected by considering when a) the prior depen-305

dence uncertainty, b) seed uncertainty, and c) statistical306

uncertainty are low. We select an iteration number of 15,307

low enough such that the uncertainty due to seed vari-308

ation and statistical uncertainty are both reasonable, at309

the cost of a non-negligible prior dependence uncertainty.310

Results Figure 1 shows the distribution of fully cor-311

rected CollinearDrop groomed jet masses for jets with312

20 < pT < 30 GeV/c and 30 < pT < 50 GeV/c313

in star markers with the red band indicating the sys-314

tematic uncertainties. This figure excludes jets with315

M = Mg (?% of jets in this 20 < pT < 30 GeV/c316

and ?% of jets in 30 < pT < 50 GeV/c), which corre-317

sponds to the jets whose first splittings pass the crite-318

rion of (zcut, β) = (0.1, 0) without the need of SoftDrop319

grooming, because the lower-pT prong of the splitting320

carries at least 10% of the total jet pT. As a rough calcu-321
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FIG. 1. CollinearDrop jet mass distributions.

lation, for a jet of 20 GeV/c, if we take the mean values322

⟨M⟩ = 4.27 GeV/c2 and ⟨Mg⟩ = 3.67 GeV/c2 for a jet323

with 20 < pT < 25 GeV/c from Ref. [16], then we get324

a value of log(a) = −1.92, similar to the peak value of325

our measurement, even though the latter excludes the326

M = Mg case. It is worth noting that even though M327

and Mg both increase as a function of pT as shown Ref.328

[16], log(a) has a weak dependence on pT. This is con-329

sistent with the prediction from Ref. [18] that at O(αs)330

(?), a2 = R2zcut,2, independent of pT and dependent on331

the grooming criteria.332

Also shown in Fig. 1 are comparisons with event gen-333

erator descriptions in dashed lines, with vertical error334

bars indicating statistical uncertainties. Both PYTHIA6335

STAR tune [25] and HERWIG 7.2.2 [34] capture the data,336

although there is some tension with PYTHIA 8.303 with337

Detroit tune [33] (finalize after systematics are done). In338

purple band, analytic calculation with NLL SCET per-339

formed at the parton level shows deviation from both340

event generator predictions and data, indicating that the341

CollinearDrop groomed mass is sensitive to hadroniza-342

tion effects. The error band indicates typical scale vari-343

ations in theoretical calculation.344

Figure 2 shows the correlation between a and the345

SoftDrop groomed shared momentum fraction zg and346

groomed jet radius Rg in 20 < pT < 30 GeV/c, where347

the average value of the CollinearDrop groomed jet mass348

is indicated by the color of each bin in the zg−Rg plane,349

which is calculated as a weighted sum of a from the un-350

folded matched jets and particle-level missed jets. The351

M = Mg jets are included. This plane captures the Lund352

Plane [35] of the first groomed splitting. We see that a is353

strongly correlated with Rg while weakly correlated with354

zg.355

Also shown in Fig. 2 are curves of constant formation356

time t, which approximates the time it takes for a parton357

to radiate a gluon. This can be estimated as the life-time358

of the parton using the Heisenberg uncertainty principle359

[19]. It is related to other parton kinematic variables by:360

t =
1

2Ez(1− z)(1− cos(θ))
, (6)361

where E is the energy of the parent parton, z is the mo-362

mentum fraction carried by the lower-pT daughter par-363

ton, and θ is the opening angle between the two daugh-364

ters. E can be approximated by the jet pT; for a pertur-365

bative hard splitting, z and θ can be approximated by366

the SoftDrop zg and Rg, respectively [13]. We obtain the367

curves shown by replacing the parton variables in Eq. 6368

with their (SoftDrop) jet counterparts, so t can be inter-369

preted as the time that the first hard splitting to pass370

the SoftDrop criterion takes to develop. Our result hints371

at a correlation between the amount of early-stage radi-372

ation and the time at which the hard splitting happens.373

Specifically, to shed a significant amount of mass at the374

early stage of the parton shower, which is predominantly375

done via soft gluon radiation, the hard splitting needs376

to happen relatively late on average (or roughly at small377

Rg).378

The curves of constant formation time can potentially379

help explain the dependence that a has on Rg and zg.380

In the region of zg ≥ zcut,2 = 0.1, the slopes of the for-381

mation time curves are relatively large, so it depends on382

Rg more than zg. To obtain a larger zg dependence, one383

can choose a lower value of zcut,2 to access the smaller zg384

values, where the formation time slopes decrease. A de-385

pendence of a on zcut,2 is also expected via a2 = R2zcut,2.386

It is also worth emphasizing that the measurement387

shown in Fig. 2 showcases the power of MultiFold, which388

enabled us to make selections in three variables, pT, zg389

and Rg, and study a fourth one a which itself is compos-390

ite of a few variables; all of these observables have been391

fully corrected for detector effects.392

Figure 3 shows the log(a) distributions for specific re-393

gions of the zg − Rg plane for jets with 20 < pT < 30394

GeV/c. The leftmost bin includes the a = 0 jets, which395

do not have anything removed by SoftDrop and are there-396

fore possibly dominated by jets whose first splittings in397

the parton shower are already perturbative. Region 3398

(0.15 < Rg < 0.25 and 0.1 < zg < 0.2) includes asym-399

metric and intermediate-angle splittings while Region 2400

(0.15 < Rg < 0.25 and 0.4 < zg < 0.5) includes symmet-401

ric and intermediate-angle splittings. Despite the dif-402

ferent zg selections, the fraction of a = 0 jets and the403

distributions in a > 0 are similar. The weak dependence404
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FIG. 2. CollinearDrop groomed mass as a function of zg −Rg

of a on zg is consistent with our observation made for405

Fig. 2.406

However, as we continue to scan across the plane, we407

notice drastic changes in the fraction of jets with a = 0 as408

well as differences in shape in the a > 0 region. We first409

move onto Region 1 (indicated by the green box 1 in Fig.410

2, 0 < Rg < 0.1 and 0.4 < zg < 0.5), which includes sym-411

metric and collinear radiation from the first hard split-412

ting. Fig. 3 also shows that, compared to Regions 2 and413

3, Region 1 is more likely to have soft radiation groomed414

away by SoftDrop as indicated by the decreased count for415

a = 0, and has a broader tail for the small but nonzero416

a region. On the other hand, we observe from Fig. 2417

that we have on average higher values of a in this re-418

gion, which can be understood as mostly affected by the419

slightly higher values in log(a) > −1.5. The distribution420

of log(a) is wider in both directions due to the fact that a421

selection of narrow hard splitting opens up a large phase422

space for the amount of radiation preceding the splitting.423

Region 4 (0.3 < Rg < 0.4 and 0.1 < zg < 0.2) in-424

cludes asymmetric and wide-angle splittings, character-425

istic of perturbative early emissions. Again compared to426

Regions 2 and 3, in Region 4, the significant fraction of427

a = 0 jets indicates that it is highly probable that no428

non-perturbative early emission has happened before the429

perturbative emission. This is likely the explanation for430

why the z-axis values are also close to 0 in this region in431

Fig. 2.432

Conclusions In this Letter, we have presented the433

first CollinearDrop groomed observable measurement,434

the CollinearDrop groomed mass, and its correlations435

with groomed jet substructure observables, in pp colli-436

sions at
√
s = 200 GeV with the STAR experiment. A437

machine learning driven method to correct for detector438

effects, MultiFold, has been applied for the first time to439

hadronic collision data, which allows for access of multi-440

dimensional correlations on a jet-by-jet basis. We demon-441

strate how MultiFold allows us to present measurements442

in N dimensions and shows promising potential for fu-443

ture multi-differential measurements as the community444

FIG. 3. Distribution of log(a) with various selections of Rg

and zg.

enters a high-statistics, precision QCD era.445

Event generator predictions and theoretical calcula-446

tion were shown to qualitatively describe the data for447

the CollinearDrop groomed mass, which probes the soft448

radiation within jets. From the investigation of the cor-449

relation between the CollinearDrop groomed mass a and450

the SoftDrop groomed observables zg and Rg, we observe451

that on average, a large nonperturbative radiation biases452

the perturbative splitting to happen late. We also ob-453

served a strong correlation between the CollinearDrop454

groomed mass and Rg. In particular, a large Rg biases455

toward a higher probability that the jet has no radiation456

prior to the perturbative splitting, and a small Rg bi-457

ases towards a higher probability that the jet has some458

radiation prior to the splitting. These measurements459

demonstrate the interplay between the nonperturbative460

processes and the perturbative jet fragmentation.461
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