Preliminary Figure Request: Azimuthal Anisotropy of Jets in $\sqrt{s_{NN}} = 200$ GeV Ru+Ru and Zr+Zr Collisions

Tristan Protzman

Lehigh University

Contact Information

- PA name: Tristan Protzman
- PA email: <u>tlp220@lehigh.edu</u>
- Supervisor email address: <u>rjr215@lehigh.edu</u>

Physics Motivation

- Jet quenching seems to be a path length dependent effect
- Semi-central heavy-ion collisions produce an approximately elliptical QGP
- Measuring in-plane and out-of-plane jet yields insight into path length dependence
 - In-plane jets experience less medium than out-of-plane jets

Dataset

- Dataset: Isobar, $\sqrt{s_{NN}} = 200$ GeV Ru+Ru and Zr+Zr collisions
- Year: 2018
- Production tag:
- Triggers used:
 - MinBias for event plane flattening
 - 600001, 600011, 600021, 600031
 - BHT1_VPD30 for jet finding
 - 600221, 600231
 - BHT1_VPD100 for jet finding
 - 600222, 600232
- Embedding request id: n/a

Bad Run List

- Union of bad run lists used in CME analysis
- <u>https://drupal.star.bnl.gov/STAR/system/files/isobarbadrun.txt</u>
- 162 runs

Event level cuts

v_z	-35 cm – 25 cm
v_r	< 2 cm
$ v_z - v_{z,vpd} $	< 5 cm

Track Level Cuts

p_T	0.2 GeV -30 GeV
DCA	< 1 cm
nHitsFit	> 15
nHitsFit/nHitsMax	> 0.52

Systematic Uncertainties

• None currently considered

Analysis Procedure - Broadly

- The dataset is processed three times
 - The first pass produces the phi-weighting values to flatten the event plane
 - The second pass produces the psi-shifting values to flatten the event plane
 - These passes use the minbias triggers
- The third pass finds R=0.2 Anti-kT jets and hard cores and saves these events to a tree for later processing
- The new tree is processed
- Jets which do not fall within 0.2 in $\eta \phi$ space of a hard core are cut
- Jet yield is plotted as a function $\Delta \phi = \left| \phi_{jet} \Psi_2 \right|$
- Fit to $A(1 + 2v_2 \cos(2\Delta \phi))$ to extract v_2^{ch}

Analysis Procedure – Event Plane Finding

- The dataset is processed three times
 - The first pass produces the phi-weighting values to flatten the event plane
 - The second pass produces the psi-shifting values to flatten the event plane

Analysis Procedure – Jet Finding

- Anti-kT R=0.2 jets are found on all tracks passing QA
- Anti-kT R=0.2 hard cores are found with tracks with pT > 2 GeV
- Jets are matched to nearest hard core with dR < 0.2 in $\eta \phi$ space
- Matched jet tail to left because of background subtraction

Analysis Procedure – Jet Matching

- Most matches are very close in $\eta-\phi$
- Variation in pT from background subtraction

Analysis Procedure – Yield Relative to Ψ_2

- Distribution folded into $0 < \Delta \phi < 2\pi$
- Binned in jet momentum
- Fit with $A(1 + 2v_2^{obs}\cos(2\Delta\phi))$

Figure

- Observed v_2 corrected for resolution

•
$$v_2 = \frac{v_2^{obs}}{R(\Psi_2)}$$

• Errors from error in fit

Backup

Figure

• Larger pT bins

All pT bins

