Transverse Single Spin Asymmetry (A_N) for Electromagnetic-Jet in FMS

Dataset run 17 p⁺ + p collision at \sqrt{s} =510 GeV

Preliminary request

Bishnu Karki

$\text{EM-jet } \textbf{A}_{\textbf{N}} \text{ (p} \uparrow \textbf{+} \textbf{p} \rightarrow \text{EM-jet } \textbf{+} \textbf{X} \text{)}$

Characterize A_N as a function of EM-jet- p_T EM-jet energy, and photon multiplicities

FMS Forward Meson Spectrometer EEMC Endcap Electromagnetic Calorimeter

Data Features:

- Data-stream: FMS-stream
- Dataset: Run 17 (\sqrt{s} = 510 GeV pp trans)
- Transversely polarized protons (<P>= 59%)
- Triggers: Small BS, Large BS and FMS-JP trigger
- Calibration from Minghui
- FMS hot channel masking before reconstruction
- Exclude highly bit-shifted FMS channels
- Production tag : P18ic
- STAR Library version: SL20a

EM-jet: Jet reconstructed out of photons only Jet Reconstruction

- Anti- k_{τ} jet clustering algorithm with R= 0.7
- E*y* > 1.0 GeV
- -80 < z < 80 cm
- Jet p_T > 2.0 GeV/c
- 2.8 < η < 3.8

EM-Jet A_N Extraction

 A_{N} as a function of EM-jet p_{T} , EM-jet energy, and photon multiplicity

- Energy bins: [0-20], [20 -40], [40 -60], [60 -80],
- and [80 -100] GeV
- 16 equal $\boldsymbol{\phi}$ bins in the range $\boldsymbol{\pi}$ to $\boldsymbol{\pi}$
- 5 photon multiplicity bins
- Separately for $x_F > 0$ and $x_F < 0$
- Cross-ratio formula to calculate A_N

$$\epsilon = A_N imes P imes \cos(\phi)$$

 $\epsilon pprox rac{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} - \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}}{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}}$

Cancels systematics, such as luminosity and detector effects

Electromagnetic-Jet A_N Correction and Uncertainty

- Polarization Error
- Background Uncertainty
 - Underlying events
- Energy or p_T Corrections and Uncertainties:
 - Calibration uncertainty
 - Energy or p_{T} correction
 - Uncertainty due to radiation damage
- Event Misidentification:
 - Misidentification of 1, 2 etc photons as other types (2, 1, etc)

Polarization Uncertainty

- $\sigma_{\text{fill-to-fill}} = 1.08 \%$
- P_{Set} = 59.94 %
- σ_{PSet} = 1.07 %

Underlying Event (UE) Correction

- EM-jet p_T values are corrected for contaminations from underlying events (UE) using off-axis cone method
- Correction to jet p_T , dp_T = underlying Event Density x Area
- Corrected Jet $\mathbf{p}_{\mathsf{T}} = \mathbf{p}_{\mathsf{T}} \mathbf{d}\mathbf{p}_{\mathsf{T}}$

Correction is applied to the presented result

Cut: p,>2 GeV/c both in sim and data

Data vs Simulation

For correction from simulation Jet patch trigger is excluded

p_{τ} correction from simulation

 p_{τ} in data is corrected using the fit from simulation

p_{T} Uncertainty

$$\frac{\sigma_{\boldsymbol{p}_{\mathcal{T}}}}{\boldsymbol{p}_{\mathcal{T}}} = \boldsymbol{C} \oplus \boldsymbol{G} \oplus \boldsymbol{E}$$

C: Calibration Uncertainty (3.5%)

G: Uncertainty from non-linear response and radiation damage (0.5%)

E: Uncertainty from energy resolution and correction (1.5 %)

$$rac{\sigma_{p_T}}{p_T} \sim 4\%$$

Ref: Run 11 and 15 π^0 A_N Analysis Note by Zhanwen Zhu

Unfolding for Event Misidentification

- Solve a set of five linear equations with 3 variables for each energy and p_{T} bin using simulation
- Decompose A_N as a linear combination of A_N^i corresponding to n_i photons
- Use SVD for the unfolding procedure (e.g TSVD Unfolding class from ROOT Framework)

Unfolding for Event Misidentification

A_{N} before unfolding are reported

Systematic Error = $\frac{A_N \text{before Unfolding} - A_N \text{after Unfolding}}{A_N \text{before Unfolding}}$

Systematic Uncertainty

Uncertainty in	Source	N _y =1, 2	N _y = 3	N _y = 4,5
A _N	Photon Misidentification	20%	15%	20%
A _N	Polarization	1%	1%	1%
р _т	Calibration	4%	4%	4%

Major source of uncertainty coming from photon misidentification

Comparing with existing results (Run 11 Mriganka Mouli Mondal)

P. [GeV/c]

A_N as photon multiplicity

- A_N for 1 or 2 photons, 3 photons, and 4 or 5 photons
- A_N dependence on photon multiplicity
- A_N decreases as complexity increases (larger number of photons in EM-jet)

A_N as photon multiplicity

A_{N} at different \sqrt{s} and photon multiplicities

<u>L.Kabir p↑ + p @200 GeV</u>

About 15% systematic uncertainty for both run 17 \sqrt{s} =200 GeV and run 15 (\sqrt{s} =200 GeV) 16

Conclusion

- A_N for EM-jet are extracted using run 17 data set, p⁺ + p collision at $\sqrt{s}=510$ GeV
- A_N are extracted as function of EM-jet p_T , x_F , photon multiplicities for different energies bin
- Extracted A_N are in agreement with similar existing result from run 11 <u>Mriganka</u> <u>Mouli Mondal</u>
- For simulation only board sum trigger are considered for correction
- Correction and systematic are implemented
- A_N shows similar trend as previous results, decreases with higher photon multiplicities
- A_N shows no any dependence with \sqrt{s}

Backup

Unfolding for Event Misidentification First p_t bin

