Transverse Single Spin Asymmetry (A_N) for Electromagnetic-Jet in FMS

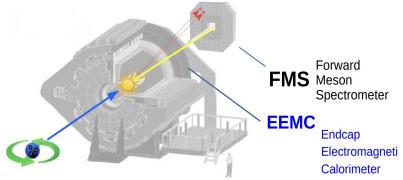
Dataset run 17 p \uparrow + p collision at \sqrt{s} =510 GeV

Preliminary request

Dec 06, 2023

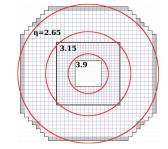
Bishnu Karki

My Blog



EM-jet A_N ($p\uparrow + p \rightarrow EM$ -jet + X)

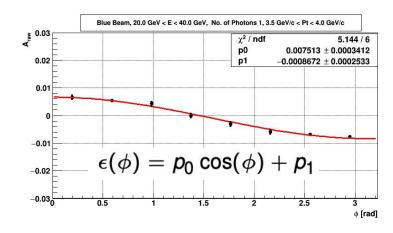
- Characterize A_N as a function of EM-jet-p_T energy, and photon multiplicities
- Explore the potential sources of large A_N

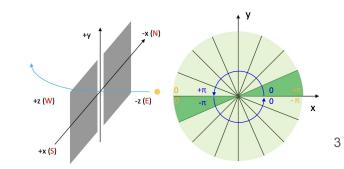

Data Features:

- Data-stream: FMS-stream
- Dataset: Run 17 (\sqrt{s} = 510 GeV pp trans)
- Transversely polarized protons (<P>= 59%)
- Triggers: Small BS, Large BS, FMS-JP trigger
- Vertex z priority : TPC, VPD, BBC
- Calibration from Minghui
- FMS hot channel masking before reconstruction
- Exclude highly bit-shifted FMS channels
- Production tag : P18ic
- STAR Library version: SL20a

EM-jet: Jet reconstructed out of photons only Jet Reconstruction

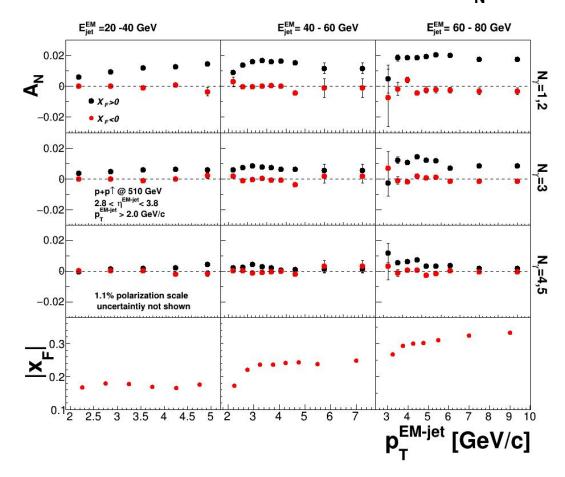
- Anti-k_⊤ jet clustering algorithm with R= 0.7
- Ey > 1.0 GeV
- -80 < z < 80 cm
- Jet p_⊤ > 2.0 GeV/c
- $2.8 < \eta < 3.8$

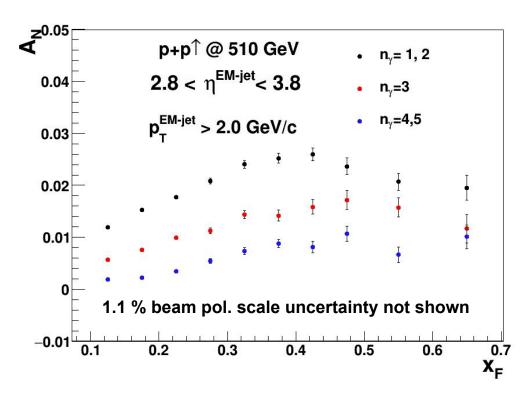



EM-Jet A_N Extraction

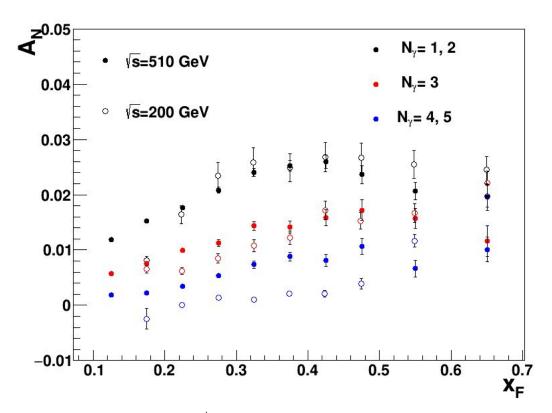
A_{N} as a function of EM-jet p_{T} , EM-jet energy, and photon multiplicity

- Energy bins: [0-20], [20 -40], [40 -60], [60 -80], and [80 -100] GeV
- 16 equal ϕ bins in the range π to π
- 3 photon multiplicity bins $[n_{\gamma}<2, n_{\gamma}=3, and n_{\gamma}>4]$ Separately for $x_F>0$ and $x_F<0$
- Cross-ratio formula to calculate A_N


$$\epsilon = A_{N} imes P imes \cos(\phi)$$
 $\epsilon pprox rac{\sqrt{N_{\phi}^{\uparrow}N_{\phi+\pi}^{\downarrow}} - \sqrt{N_{\phi+\pi}^{\uparrow}N_{\phi}^{\downarrow}}}{\sqrt{N_{\phi}^{\uparrow}N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow}N_{\phi}^{\downarrow}}}$


Cancels systematics, such as luminosity and detector effects

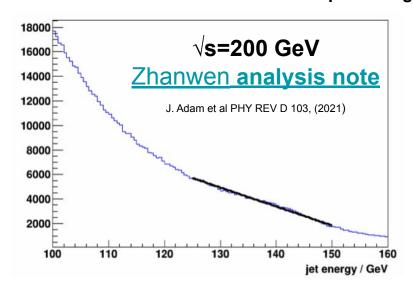
EM-Jet A_N at \sqrt{s} =510 GeV

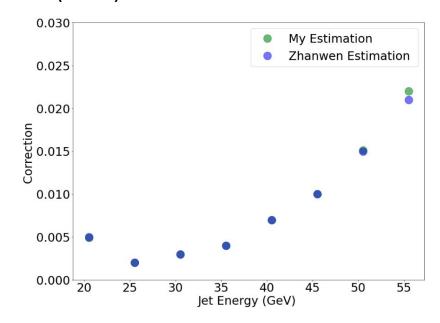

- A_N for 1 or 2 photons, 3 photons, and 4 or 5 photons
- Error bars statistical only
- A_N dependence on photon multiplicity
- A_N decreases as complexity increases

EM-Jet A_N at \sqrt{s} =510 GeV

Dependence photon multiplicity

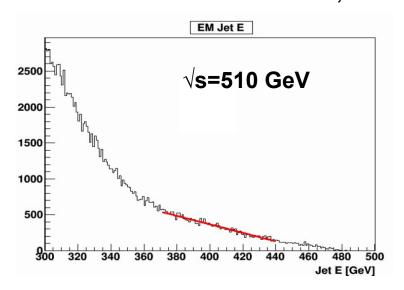
A_{N} at different \sqrt{s} and photon multiplicities

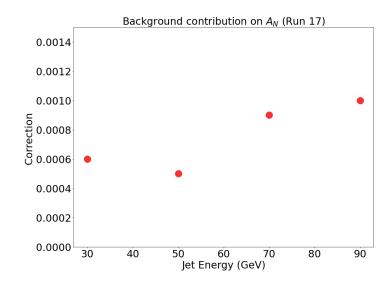

L.Kabir p↑ + p @200 GeV


Dependence on \sqrt{s} , especially at lower photon multiplicity

Electromagnetic-Jet A_N Correction and Uncertainty

- Underlying event correction, correction in p_{τ} from detector-particle level done
- Polarization Error (~1.1%)
 - [1] W.B. Schmidke , RHIC Polarization for Run 9-17
 - [2] Z. Chang, Example calculation of fill-to-fill polarization uncertainties
- Energy or p_⊤ Corrections and Uncertainties (~4%):
 - Calibration uncertainty (3.5%)
 - Energy or p_T correction (0.5%)
 - Uncertainty due to radiation damage (1.5%)
- Systematic on A_N
 - Contamination from unphysical events in A_N energy bin as in J. Adam et al PHY REV D 103,
 (2021), (Zhanwen analysis note)


Systematic on Em-Jet A_N Reproducing existing results (run 15)



- Unphysical events, events with Jet E larger than beam energy
- Contamination from unphysical events is extrapolated to A_N energy bin for systematic on A_N
- Able to reproduce Zhanwen results (Run 15)

Correction from Unphysical events Run 17, beam energy 255 GeV

- For run 17 (beam energy 255 GeV) the contamination from unphysical events is insignificant
- "In Run11 (beam energy 250 GeV), since we are working at the energy range that is far away from the beam energy, the influence of the background is considered to be negligible"
 Zhanwen analysis note

EM-Jet A_N Existing result

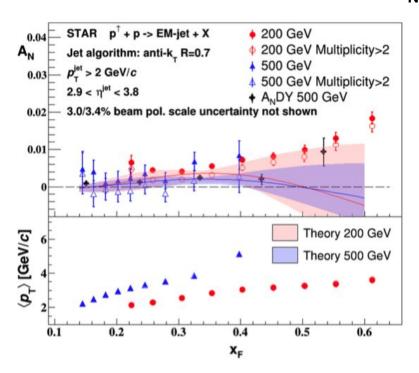


FIG. 9. Transverse single-spin asymmetry as a function of $x_{\rm F}$ for electromagnetic jets in transversely polarized proton-proton collisions at $\sqrt{s}=200$ and 500 GeV. The error bars are statistical uncertainties only and the systematic uncertainties are negligible.

J. Adam et al PHY REV D 103, (2021)

Conclusion

- A_N for EM-jet are extracted using run 17 data set, $p\uparrow$ + p collision at \sqrt{s} =510 GeV
- A_N are extracted as function of EM-jet p_T , x_F , photon multiplicities for different energies bin
- Data is corrected with underlying events correction and
- A_N shows similar trend as previous results, decreases with higher photon multiplicities
- A_N shows larger dependence with center of mass energy at higher photon multiplicities
- A_N systematic computed based on similar analysis at J. Adam et al PHY REV D 103, (2021)
- A_N systematic is insignificant, result consistent to previous result J. Adam et al PHY REV D 103, (2021)

11

Backup

Underlying Event (UE) Correction and particle-detector level correction

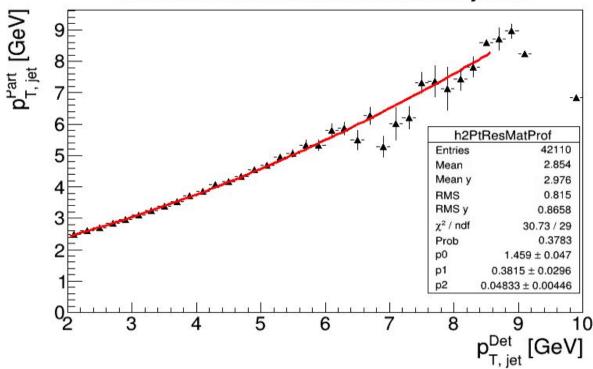
- Underlying event is a part of a jet but not from the parton fragmentation could be secondary scattering
- EM-jet p_T values are corrected for contaminations from underlying events (UE) using off-axis cone method
- Correction to jet p_T, dp_T = underlying Event Density x Area
- Corrected Jet p_T = p_T dp_T

Polarization Uncertainty

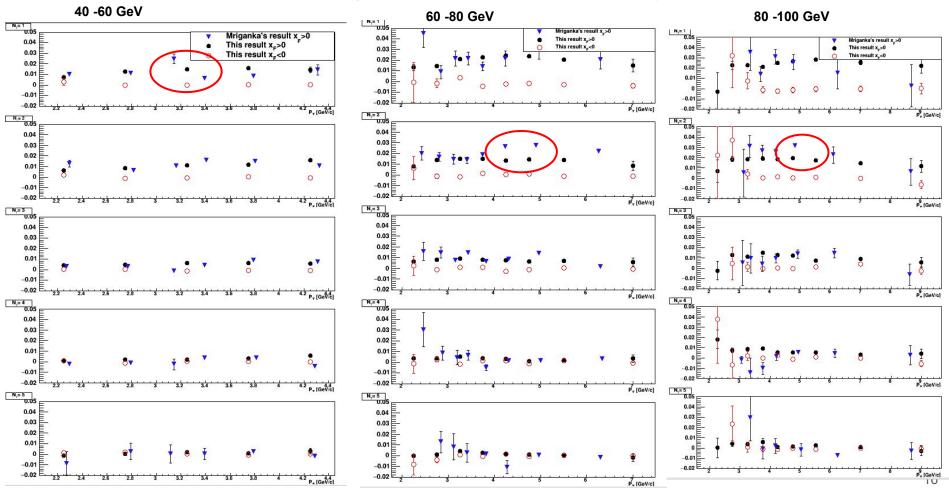
$$\begin{split} P_{fill} &= \sigma(P_0) + \frac{dp}{dt} \cdot \left(\frac{\sum_{run} t_{run} L_{run}}{L_{fill}} - t_0\right) \\ P_{set} &= \frac{\sum_{fill} L_{fill} P_{fill}}{\sum_{fill} L_{fill}} \\ \frac{\sigma_{P_{Set}}}{P_{Set}} &= \frac{\sigma(scale)}{P} \oplus \sigma_{fill-to-fill} \oplus \frac{\sigma(profile)}{P} \\ \frac{\sigma(scale)}{P} &= 1.1 \% \\ \frac{\sigma(profile)}{P} &= \frac{2.2}{\sqrt{M}} \\ \sigma_{fill-to-fill} &= \left(\sqrt{1 - \frac{M}{N}}\right) \frac{\sum_{fill} L_{fill} \sigma_{P_{fill}}}{\sum_{fill} L_{fill}} \end{split}$$

- M = 162
- N = 190
- $\sigma_{\text{fill-to-fill}} = 0.05 \%$
- P_{Set} = 59.94 %
- $\sigma_{\text{PSet}} = 1.07 \%$

[1] W.B. Schmidke , RHIC Polarization for Run 9-17


 $\sigma(P_{fill}) = \sigma(P_0) \oplus \sigma\left(\frac{dp}{dt}\right) \cdot \left(\frac{\sum_{run} t_{run} L_{run}}{L_{fill}} - t_0\right)$

[2] Z. Chang, Example calculation of fill-to-fill polarization uncertainties


Fill Number

Detector to particle level correction (p_T)

Comparison with existing results (Run 11, √s=500 GeV Mriganka Mouli Mondal)

