Transverse Single Spin Asymmetry (A_N) for Electromagnetic-Jet in FMS

Dataset run 17 p \uparrow + p collision at \sqrt{s} =510 GeV

STAR Collaboration Meeting Oct 24, 2023

Bishnu Karki UC, Riverside

Follow up for the status presented <u>here</u> <u>My Blog</u>

Transverse Single Spin Asymmetry (A_N)

• Unexpected large transverse single-spin asymmetries (*A_N*) are observed in proton-proton collisions

 $A_N = \frac{d\sigma_L - d\sigma_R}{d\sigma_L + d\sigma_R}$

D.L. Adams *et al.*, PLB **261**, 201(1991) B. I. Abelev *et al.*, PRL **101**, 222001(2008) A. Adare *et al.*, PRD **90**, 012006 (2014) E.C. Aschenauer *et al.*, arXiv:1602.03922

R. D. Klem *et al.*, PRL **36**, 929 (1976) D.L. Adams *et al.*, PLB **264**, 462 - 466(1991) I. Arsene *et al.*, PRL **101**, 042001 (2008)

Potential Sources for Observed Large A_N

Sivers Mechanism:

Correlation between proton spin and parton k_T

D. Sivers, Phys Rev D 41 (1990) 83; 43 (1991) 261

Signatures: A_N for jets or direct photons, $W^{+/-}$, Z^0 , Drell-Yan

Collins Mechanism:

Transversity (quark polarization) \otimes jet fragmentation asymmetry **S**

J. Collins, Nucl Phys B 396 (1993) 161

Signatures: Collins effect, Interference fragmentation function (IFF), pion A_N

Twist-3:

Quark-gluon / gluon-gluon correlations and fragmentation functions. A source for Sivers function.

J.W. Qiu and G. Sterman, Phys Rev Lett 67 2264 (1991)

$\mathsf{EM}\text{-}\mathsf{jet}\,\mathsf{A}_{\mathsf{N}}\,\,(\mathsf{p}\!\uparrow+\mathsf{p}\to\mathsf{EM}\text{-}\mathsf{jet}+\mathsf{X}\,)$

- Characterize A_N as a function of EM-jet- p_T energy, and photon multiplicities
- Explore the potential sources of large A_N

Data Features:

- Data-stream: FMS-stream
- Dataset: Run 17 ($\sqrt{s} = 510$ GeV pp trans)
- Transversely polarized protons (<P>= 59%)
- Triggers: Small BS, Large BS, FMS-JP trigger
- Vertex z priority : TPC, VPD, BBC
- Calibration from Minghui
- FMS hot channel masking before reconstruction
- Exclude highly bit-shifted FMS channels
- Production tag : P18ic
- STAR Library version: SL20a

EM-jet: Jet reconstructed out of photons only Jet Reconstruction

- Anti- k_{τ} jet clustering algorithm with R= 0.7
- E**y** > 1.0 GeV
- -80 < z < 80 cm
- Jet p_τ > 2.0 GeV/c
- 2.8 < *η* < 3.8

η=2.65

EM-Jet A_N Extraction

 A_{N} as a function of EM-jet p_{T} , EM-jet energy, and photon multiplicity

- Energy bins: [0-20], [20 -40], [40 -60], [60 -80], and [80 -100] GeV
- 16 equal $\boldsymbol{\phi}$ bins in the range $\boldsymbol{\pi}$ to $\boldsymbol{\pi}$
- 3 photon multiplicity bins [n_{γ}<2, n_{γ} =3 , and n_{γ}>4] Separately for x_F>0 and x_F<0
- Cross-ratio formula to calculate A_N

$$\epsilon = A_N imes P imes \cos(\phi)$$

 $\epsilon pprox rac{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} - \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}}{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}}$

Cancels systematics, such as luminosity and detector effects

EM-Jet A_N at \sqrt{s} =510 GeV

- A_N for 1 or 2 photons, 3 photons, and 4 or 5 photons
- Error bars statistical only
- A_N dependence on photon multiplicity
- A_N decreases as complexity increases (larger number of photons in EM-jet)

A_{N} at different \sqrt{s} and photon multiplicities

Dependence on \sqrt{s} , especially at lower photon multiplicity

L.Kabir p↑ + p @200 GeV

Electromagnetic-Jet A_N Correction and Uncertainty

- Underlying event correction, correction in p_{τ} from detector-particle level done
- Polarization Error (~1.1%)
 [1] W.B. Schmidke, RHIC Polarization for Run 9-17

[2] Z. Chang, Example calculation of fill-to-fill polarization uncertainties

- Energy or p_T Corrections and Uncertainties (~4%):
 - Calibration uncertainty (3.5%)
 - Energy or p_T correction (0.5%)
 - Uncertainty due to radiation damage (1.5%)
- Systematic on A_N (ongoing)
 - Contamination from unphysical events in A_N energy bin (<u>Zhiwen's analysis</u> <u>note</u>)

Underlying Event (UE) Correction and particle-detector level correction

- Underlying event is a part of a jet but not from the parton fragmentation could be secondary scattering
- EM-jet p_T values are corrected for contaminations from underlying events (UE) using off-axis cone method
- Correction to jet p_T , dp_T = underlying Event Density x Area
- Corrected Jet $\mathbf{p}_{\mathsf{T}} = \mathbf{p}_{\mathsf{T}} \mathbf{d}\mathbf{p}_{\mathsf{T}}$

Correction is applied to the presented result

Correction from Unphysical events

- Unphysical events, events with Jet E larger than beam energy
- Contamination from unphysical events is extrapolated to A_N energy bin for systematic on A_N

Conclusion

- A_N for EM-jet are extracted using run 17 data set, p \uparrow + p collision at \sqrt{s} =510 GeV
- A_N are extracted as function of EM-jet p_T, x_F, photon multiplicities for different energies bin
- Data is corrected with underlying events correction and
- A_N shows similar trend as previous results, decreases with higher photon multiplicities
- A_N shows larger dependence with center of mass energy at higher photon multiplicities
- A_N systematic is underway

Backup

Polarization Uncertainty

- $\sigma_{\text{fill-to-fill}} = 0.05 \%$
- P_{Set} = 59.94 %
- σ_{PSet} = 1.07 %

Detector to particle level correction (p_{τ})

Particle level vs Detector level jet Pt

Correction is applied to the presented result

Polarization Uncertainty

- $\sigma_{\text{fill-to-fill}} = 0.05 \%$
- P_{Set} = 59.94 %
- $\sigma_{\rm PSet} = 1.07 \%$

Comparison with existing results (Run 11, √s=500 GeV Mriganka Mouli Mondal.)

