Transverse Single Spin Asymmetry (A_N) for Electromagnetic-Jet in FMS

Dataset run 17 p \uparrow + p collision at \sqrt{s} =510 GeV

July 26, 2023

Bishnu Karki UC, Riverside

Follow up for the status presented here

$\text{EM-jet } \textbf{A}_{\textbf{N}} \text{ (p} \uparrow \textbf{+} \textbf{p} \rightarrow \text{EM-jet } \textbf{+} \textbf{X} \text{)}$

- Characterize A_N as a function of EM-jet- p_T energy, and photon multiplicities
- Explore the potential sources of large A_N

Data Features:

- Data-stream: FMS-stream
- Dataset: Run 17 (\sqrt{s} = 510 GeV pp trans)
- Transversely polarized protons (<P>= 59%)
- Triggers: Small BS, Large BS, FMS-JP trigger -
- Vertex z priority : TPC, VPD, BBC
- Calibration from Minghui
- FMS hot channel masking before reconstruction
- Exclude highly bit-shifted FMS channels
- Production tag : P18ic
- STAR Library version: SL20a

EM-jet: Jet reconstructed out of photons only Jet Reconstruction

- Anti- k_{T} jet clustering algorithm with R= 0.7
- Εγ > 1.0 GeV
- -80 < z < 80 cm
- Jet $p_T > 2.0 \text{ GeV/c}$ (expect JP)
- 2.8 < η < 3.8

EM-Jet A_N Extraction

 A_{N} as a function of EM-jet p_{T} , energy, and photon multiplicity (FMS data)

- Energy bins: [0-20], [20 -40], [40 -60], [60 -80],
- and [80 -100] GeV
- 16 equal $\boldsymbol{\phi}$ bins in the range $\boldsymbol{\pi}$ to $\boldsymbol{\pi}$
- 5 photon multiplicity bins
- Separately for $x_F > 0$ and $x_F < 0$
- Cross-ratio formula to calculate A_N

$$\epsilon = A_N imes P imes \cos(\phi)$$

 $\epsilon pprox rac{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} - \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}}{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}}$

Cancels systematics, such as luminosity and detector effects

Trigger distribution in Data

- Analyzed both data and simulation with trigger threshold > 2GeV
- Trigger threshold for JetPatch (JP) was set to 7.5 GeV for run 17 period
- Analyzed data excluding JP in both data and simulation

- JP trigger was set to high threshold (7.5 GeV)
- About 2.5% of events triggered by JP trigger (JP0 + JP1 + JP2)

Data vs Simulation

Cuts:

- $-80 < z < 80 \text{ cm}, 2.8 < \eta < 3.8$
- Jet p_T > 2.0 GeV/c

Comparison with existing results (Run 11, √s=500 GeV Mriganka Mouli Mondal.)

A_N with \sqrt{s} and photon multiplicities

Electromagnetic-Jet A_N Correction and Uncertainty

- Underlying event correction, correction in p_T from detector-particle level done
- Polarization Error (~1%)

[1] W.B. Schmidke , <u>RHIC Polarization for Run 9-17</u>
[2] Z. Chang, <u>Example calculation of fill-to-fill polarization uncertainties</u>

- Energy or p_T Corrections and Uncertainties (~4%):
 - Calibration uncertainty
 - \circ Energy or p_T correction
 - Uncertainty due to radiation damage
- Event Misidentification: (About 15 -20 % uncertainty)
 - Misidentification of 1, 2 etc photons as other types (2, 1, etc)
 - TSVD Unfolding Class from ROOT framework
 - \blacktriangleright A_N for given E, p_T
 - Number of photons in detector-particle level matrix
 - Mriganka (run 11) Latif (run 15) reports 5-7% systematic
 - Relies on simulation and data agreement

Conclusions:

- A_N for EM-jet are extracted for different photon multiplicity as function of p_T
- A_N decreases as complexity increases (larger number of photons in EM-jet)
- Extracted A_N are consistent with Run 11 Mriganka Mouli Mondal's result
- Data and simulation matches fairly well
- Underlying event correction on p_T is done
- p_T corrected with simulation (particle detector level correction)
- Luminosity averaged polarization and associated uncertainty computed
- p_{T} uncertainty from Run 11 analysis (5%)
- Systematic due to event misidentification is very high

Back up

Unfolding for Event Misidentification

- Solve a set of five linear equations with five variables for each energy and p_T bin
- Decompose A_N as a linear composition of A_N^i corresponding to n_i photons
- Use SVD for the unfolding procedure (e.g. TSVDUnfolding class)

Mriganka is reporting result in 5 photons bins but I am representing in 3 photons bins

Underlying Event (UE) Correction

- EM-jet p_T values are corrected for contaminations from underlying events (UE) using off-axis cone method
- Correction to jet p_T , dp_T = underlying Event Density x Area
- Corrected Jet $\mathbf{p}_{\mathsf{T}} = \mathbf{p}_{\mathsf{T}} \mathbf{d}\mathbf{p}_{\mathsf{T}}$

Correction is applied to the presented result

Detector to particle level correction (p_{τ})

Particle level vs Detector level jet Pt

Correction is applied to the presented result

Polarization Uncertainty

- $\sigma_{\text{fill-to-fill}} = 0.05 \%$
- P_{Set} = 59.94 %
- σ_{PSet} = 1.07 %

FMS Jet: Data (Blue) Vs Simulation (Black)

