Transverse Single Spin Asymmetry (A_N) for Electromagnetic-Jet in FMS

Dataset run 17 p \uparrow + p collision at \sqrt{s} =510 GeV

September 6, 2023

Bishnu Karki UC, Riverside

Follow up for the status presented <u>here</u> <u>My Blog</u>

$\text{EM-jet } \textbf{A}_{\textbf{N}} \text{ (p} \uparrow \textbf{+} \textbf{p} \rightarrow \text{EM-jet } \textbf{+} \textbf{X} \text{)}$

- Characterize A_N as a function of EM-jet- p_T energy, and photon multiplicities
- Explore the potential sources of large A_N

Data Features:

- Data-stream: FMS-stream
- Dataset: Run 17 (\sqrt{s} = 510 GeV pp trans)
- Transversely polarized protons (<P>= 59%)
- Triggers: Small BS, Large BS, FMS-JP trigger -
- Vertex z priority : TPC, VPD, BBC
- Calibration from Minghui
- FMS hot channel masking before reconstruction
- Exclude highly bit-shifted FMS channels
- Production tag : P18ic
- STAR Library version: SL20a

EM-jet: Jet reconstructed out of photons only Jet Reconstruction

- Anti- k_{T} jet clustering algorithm with R= 0.7
- E*y* > 1.0 GeV
- -80 < z < 80 cm
- Jet p_T > 2.0 GeV/c
- 2.8 < η < 3.8

EM-Jet A_N Extraction

 A_{N} as a function of EM-jet p_{T} , energy, and photon multiplicity (FMS data)

- Energy bins: [0-20], [20 -40], [40 -60], [60 -80], and [80 -100] GeV
- 16 equal $\boldsymbol{\phi}$ bins in the range $\boldsymbol{\pi}$ to $\boldsymbol{\pi}$
- 5 photon multiplicity bins
- Separately for $x_F > 0$ and $x_F < 0$
- Cross-ratio formula to calculate A_N

$$\epsilon = A_N imes P imes \cos(\phi) \ \epsilon pprox rac{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} - \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}}{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}}$$

Cancels systematics, such as luminosity and detector effects

Systematic on A_N

EM-Jet $A_N p \uparrow p @ \sqrt{s}=510 \text{ GeV}$

- Energy or p_T Corrections and Uncertainties (~4%):
 - Calibration uncertainty (3%)
 - Energy or p_{τ} correction (1.5%)
 - Uncertainty due to radiation damage (2%)
- Systematic on A_N are consistent with <u>M. Mondal's result</u> and <u>L. Kabir's result</u>
- A_N decreases with higher photon multiplicities in EM-jet, consistent with previous results

EM-Jet $A_N p \uparrow + p @\sqrt{s}=510 \text{ GeV}$

- Dependence in \sqrt{s} at higher multiplicities
- Results by J. Adams et al. Phys. Rev. D 103, 092009 (2021) have shown for case Nγ >2 with large statistical error

Electromagnetic-Jet A_N Correction and Uncertainty

- Underlying event correction, correction in p_{τ} from detector-particle level done
- Polarization Error (~1.1%)

[1] W.B. Schmidke , <u>RHIC Polarization for Run 9-17</u>
[2] Z. Chang, <u>Example calculation of fill-to-fill polarization uncertainties</u>

- Energy or p_T Corrections and Uncertainties (~4%):
 - Calibration uncertainty ()
 - \circ Energy or p_T correction ()
 - Uncertainty due to radiation damage ()
- Systematic on A_N (estimated A_N variation with η cut)
 - \circ 1 8 % depending on energy, photon multiplicities, and p_t

Backup

Reproducing L. Kabir's result

Run 11, √s=500 GeV Mriganka Mouli Mondal result

Run 15 √s=200 GeV (L. Kabir's result)

Comparison with existing results (Run 11, √s=500 GeV Mriganka Mouli Mondal.)

