StRoot  1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
FragmentationSystems.cc
1 // FragmentationSystems.cc is a part of the PYTHIA event generator.
2 // Copyright (C) 2012 Torbjorn Sjostrand.
3 // PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
4 // Please respect the MCnet Guidelines, see GUIDELINES for details.
5 
6 // Function definitions (not found in the header) for the
7 // ColConfig, StringRegion and StringSystem classes.
8 
9 #include "FragmentationSystems.h"
10 
11 namespace Pythia8 {
12 
13 //==========================================================================
14 
15 // The ColConfig class.
16 
17 //--------------------------------------------------------------------------
18 
19 // Constants: could be changed here if desired, but normally should not.
20 // These are of technical nature, as described for each.
21 
22 // A typical u/d constituent mass.
23 const double ColConfig::CONSTITUENTMASS = 0.325;
24 
25 //--------------------------------------------------------------------------
26 
27 // Initialize and save pointers.
28 
29 void ColConfig::init(Info* infoPtrIn, Settings& settings,
30  StringFlav* flavSelPtrIn) {
31 
32  // Save pointers.
33  infoPtr = infoPtrIn;
34  flavSelPtr = flavSelPtrIn;
35 
36  // Joining of nearby partons along the string.
37  mJoin = settings.parm("FragmentationSystems:mJoin");
38 
39  // For consistency ensure that mJoin is bigger than in StringRegion.
40  mJoin = max( mJoin, 2. * StringRegion::MJOIN);
41 
42  // Simplification of q q q junction topology to quark - diquark one.
43  mJoinJunction = settings.parm("FragmentationSystems:mJoinJunction");
44  mStringMin = settings.parm("HadronLevel:mStringMin");
45 
46 }
47 
48 //--------------------------------------------------------------------------
49 
50 // Insert a new colour singlet system in ascending mass order.
51 // Calculate its properties. Join nearby partons.
52 
53 bool ColConfig::insert( vector<int>& iPartonIn, Event& event) {
54 
55  // Find momentum and invariant mass of system, minus endpoint masses.
56  Vec4 pSumIn;
57  double mSumIn = 0.;
58  bool hasJunctionIn = false;
59  int nJunctionLegs = 0;
60  for (int i = 0; i < int(iPartonIn.size()); ++i) {
61  if (iPartonIn[i] < 0) {
62  hasJunctionIn = true;
63  ++nJunctionLegs;
64  } else {
65  pSumIn += event[ iPartonIn[i] ].p();
66  if (!event[ iPartonIn[i] ].isGluon())
67  mSumIn += event[ iPartonIn[i] ].constituentMass();
68  }
69  }
70  double massIn = pSumIn.mCalc();
71  double massExcessIn = massIn - mSumIn;
72 
73  // Check for rare triple- and higher junction systems (like J-Jbar-J)
74  if (nJunctionLegs >= 5) {
75  infoPtr->errorMsg("Error in ColConfig::insert: "
76  "junction topology too complicated; too many junction legs");
77  return false;
78  }
79  // Check that junction systems have at least three legs.
80  else if (nJunctionLegs > 0 && nJunctionLegs <= 2) {
81  infoPtr->errorMsg("Error in ColConfig::insert: "
82  "junction topology inconsistent; too few junction legs");
83  return false;
84  }
85 
86  // Check that momenta do not contain not-a-number.
87  if (abs(massExcessIn) >= 0.);
88  else {
89  infoPtr->errorMsg("Error in ColConfig::insert: "
90  "not-a-number system mass");
91  return false;
92  }
93 
94  // Identify closed gluon loop. Assign "endpoint" masses as light quarks.
95  bool isClosedIn = (iPartonIn[0] >= 0 && event[ iPartonIn[0] ].col() != 0
96  && event[ iPartonIn[0] ].acol() != 0 );
97  if (isClosedIn) massExcessIn -= 2. * CONSTITUENTMASS;
98 
99  // For junction topology: join two nearby legs into a diquark.
100  if (hasJunctionIn && joinJunction( iPartonIn, event, massExcessIn))
101  hasJunctionIn = false;
102 
103  // Loop while > 2 partons left and hope of finding joining pair.
104  bool hasJoined = true;
105  while (hasJoined && iPartonIn.size() > 2) {
106 
107  // Look for the pair of neighbour partons (along string) with
108  // the smallest invariant mass (subtracting quark masses).
109  int iJoinMin = -1;
110  double mJoinMin = 2. * mJoin;
111  int nSize = iPartonIn.size();
112  int nPair = (isClosedIn) ? nSize : nSize - 1;
113  for (int i = 0; i < nPair; ++i) {
114  // Keep three legs of junction separate.
115  if (iPartonIn[i] < 0 || iPartonIn[(i + 1)%nSize] < 0) continue;
116  Particle& parton1 = event[ iPartonIn[i] ];
117  Particle& parton2 = event[ iPartonIn[(i + 1)%nSize] ];
118  // Avoid joining non-partons, e.g. gluino/squark for R-hadron.
119  if (!parton1.isParton() || !parton2.isParton()) continue;
120  Vec4 pSumNow;
121  pSumNow += (parton1.isGluon()) ? 0.5 * parton1.p() : parton1.p();
122  pSumNow += (parton2.isGluon()) ? 0.5 * parton2.p() : parton2.p();
123  double mJoinNow = pSumNow.mCalc();
124  if (!parton1.isGluon()) mJoinNow -= parton1.m();
125  if (!parton2.isGluon()) mJoinNow -= parton2.m();
126  if (mJoinNow < mJoinMin) { iJoinMin = i; mJoinMin = mJoinNow; }
127  }
128 
129  // If sufficiently nearby then join into one new parton.
130  // Note: error sensitivity to mJoin indicates unstable precedure??
131  hasJoined = false;
132  if (mJoinMin < mJoin) {
133  int iJoin1 = iPartonIn[iJoinMin];
134  int iJoin2 = iPartonIn[(iJoinMin + 1)%nSize];
135  int idNew = (event[iJoin1].isGluon()) ? event[iJoin2].id()
136  : event[iJoin1].id();
137  int colNew = event[iJoin1].col();
138  int acolNew = event[iJoin2].acol();
139  if (colNew == acolNew) {
140  colNew = event[iJoin2].col();
141  acolNew = event[iJoin1].acol();
142  }
143  Vec4 pNew = event[iJoin1].p() + event[iJoin2].p();
144 
145  // Append joined parton to event record.
146  int iNew = event.append( idNew, 73, min(iJoin1, iJoin2),
147  max(iJoin1, iJoin2), 0, 0, colNew, acolNew, pNew, pNew.mCalc() );
148 
149  // Displaced lifetime/vertex; mothers should be same but prefer quark.
150  int iVtx = (event[iJoin1].isGluon()) ? iJoin2 : iJoin1;
151  event[iNew].tau( event[iVtx].tau() );
152  if (event[iVtx].hasVertex()) event[iNew].vProd( event[iVtx].vProd() );
153 
154  // Mark joined partons and reduce remaining system.
155  event[iJoin1].statusNeg();
156  event[iJoin2].statusNeg();
157  event[iJoin1].daughter1(iNew);
158  event[iJoin2].daughter1(iNew);
159  if (iJoinMin == nSize - 1) iPartonIn[0] = iNew;
160  else {
161  iPartonIn[iJoinMin] = iNew;
162  for (int i = iJoinMin + 1; i < nSize - 1; ++i)
163  iPartonIn[i] = iPartonIn[i + 1];
164  }
165  iPartonIn.pop_back();
166 
167  // If joined,then loopback to look for more.
168  hasJoined = true;
169  }
170  }
171 
172  // Store new colour singlet system at the end.
173  singlets.push_back( ColSinglet(iPartonIn, pSumIn, massIn,
174  massExcessIn, hasJunctionIn, isClosedIn) );
175 
176  // Now move around, so that smallest mass excesses come first.
177  int iInsert = singlets.size() - 1;
178  for (int iSub = singlets.size() - 2; iSub >= 0; --iSub) {
179  if (massExcessIn > singlets[iSub].massExcess) break;
180  singlets[iSub + 1] = singlets[iSub];
181  iInsert = iSub;
182  }
183  if (iInsert < int(singlets.size()) - 1) singlets[iInsert] =
184  ColSinglet(iPartonIn, pSumIn, massIn, massExcessIn,
185  hasJunctionIn, isClosedIn);
186 
187  // Done.
188  return true;
189 }
190 
191 //--------------------------------------------------------------------------
192 
193 // Join two legs of junction to a diquark for small invariant masses.
194 // Note: for junction system, iPartonIn points to structure
195 // (-code0) g...g.q0 (-code1) g...g.q1 (-code2) g...g.q2
196 
197 bool ColConfig::joinJunction( vector<int>& iPartonIn, Event& event,
198  double massExcessIn) {
199 
200  // Find four-momentum and endpoint quarks and masses on the three legs.
201  Vec4 pLeg[3];
202  double mLeg[3] = { 0., 0., 0.};
203  int idAbsLeg[3];
204  int leg = -1;
205  for (int i = 0; i < int(iPartonIn.size()); ++ i) {
206  if (iPartonIn[i] < 0) ++leg;
207  else {
208  pLeg[leg] += event[ iPartonIn[i] ].p();
209  mLeg[leg] = event[ iPartonIn[i] ].m();
210  idAbsLeg[leg] = event[ iPartonIn[i] ].idAbs();
211  }
212  }
213 
214  // Calculate invariant mass of three pairs, minus endpoint masses.
215  double m01 = (pLeg[0] + pLeg[1]).mCalc() - mLeg[0] - mLeg[1];
216  double m02 = (pLeg[0] + pLeg[2]).mCalc() - mLeg[0] - mLeg[2];
217  double m12 = (pLeg[1] + pLeg[2]).mCalc() - mLeg[1] - mLeg[2];
218 
219  // Find lowest-mass pair not involving diquark.
220  double mMin = mJoinJunction + 1.;
221  int legA = -1;
222  int legB = -1;
223  if (m01 < mMin && idAbsLeg[0] < 9 && idAbsLeg[1] < 9) {
224  mMin = m01;
225  legA = 0;
226  legB = 1;
227  }
228  if (m02 < mMin && idAbsLeg[0] < 9 && idAbsLeg[2] < 9) {
229  mMin = m02;
230  legA = 0;
231  legB = 2;
232  }
233  if (m12 < mMin && idAbsLeg[1] < 9 && idAbsLeg[2] < 9) {
234  mMin = m12;
235  legA = 1;
236  legB = 2;
237  }
238  int legC = 3 - legA - legB;
239 
240  // Nothing to do if no two legs have small invariant mass, and
241  // system as a whole is above MiniStringFragmentation threshold.
242  if (mMin > mJoinJunction && massExcessIn > mStringMin) return false;
243 
244  // Construct separate index arrays for the three legs.
245  vector<int> iLegA, iLegB, iLegC;
246  leg = -1;
247  for (int i = 0; i < int(iPartonIn.size()); ++ i) {
248  if (iPartonIn[i] < 0) ++leg;
249  else if( leg == legA) iLegA.push_back( iPartonIn[i] );
250  else if( leg == legB) iLegB.push_back( iPartonIn[i] );
251  else if( leg == legC) iLegC.push_back( iPartonIn[i] );
252  }
253 
254  // First step: successively combine any gluons on the two legs.
255  // (Presumably overkill; not likely to be (m)any extra gluons.)
256  // (Do as successive binary joinings, so only need two mothers.)
257  for (leg = 0; leg < 2; ++leg) {
258  vector<int>& iLegNow = (leg == 0) ? iLegA : iLegB;
259  int sizeNow = iLegNow.size();
260  for (int i = sizeNow - 2; i >= 0; --i) {
261  int iQ = iLegNow.back();
262  int iG = iLegNow[i];
263  int colNew = (event[iQ].id() > 0) ? event[iG].col() : 0;
264  int acolNew = (event[iQ].id() < 0) ? event[iG].acol() : 0;
265  Vec4 pNew = event[iQ].p() + event[iG].p();
266  int iNew = event.append( event[iQ].id(), 74, min(iQ, iG),
267  max(iQ, iG), 0, 0, colNew, acolNew, pNew, pNew.mCalc() );
268 
269  // Mark joined partons and update iLeg end.
270  event[iQ].statusNeg();
271  event[iG].statusNeg();
272  event[iQ].daughter1(iNew);
273  event[iG].daughter1(iNew);
274  iLegNow.back() = iNew;
275  }
276  }
277 
278  // Second step: combine two quarks into a diquark.
279  int iQA = iLegA.back();
280  int iQB = iLegB.back();
281  int idQA = event[iQA].id();
282  int idQB = event[iQB].id();
283  int idNew = flavSelPtr->makeDiquark( idQA, idQB );
284  // Diquark colour is opposite to parton closest to junction on third leg.
285  int colNew = (idNew > 0) ? 0 : event[ iLegC[0] ].acol();
286  int acolNew = (idNew > 0) ? event[ iLegC[0] ].col() : 0;
287  Vec4 pNew = pLeg[legA] + pLeg[legB];
288  int iNew = event.append( idNew, 74, min(iQA, iQB), max( iQA, iQB),
289  0, 0, colNew, acolNew, pNew, pNew.mCalc() );
290 
291  // Mark joined partons and reduce remaining system.
292  event[iQA].statusNeg();
293  event[iQB].statusNeg();
294  event[iQA].daughter1(iNew);
295  event[iQB].daughter1(iNew);
296  iPartonIn.resize(0);
297  iPartonIn.push_back( iNew);
298  for (int i = 0; i < int(iLegC.size()) ; ++i)
299  iPartonIn.push_back( iLegC[i]);
300 
301  // Remove junction from event record list, identifying by colour.
302  int iJun = -1;
303  for (int i = 0; i < event.sizeJunction(); ++i)
304  for (int j = 0; j < 3; ++ j)
305  if ( event.colJunction(i,j) == max(colNew, acolNew) ) iJun = i;
306  if (iJun >= 0) event.eraseJunction(iJun);
307 
308  // Done, having eliminated junction.
309  return true;
310 
311 }
312 
313 //--------------------------------------------------------------------------
314 
315 // Collect all partons of singlet to be consecutively ordered.
316 
317 void ColConfig::collect(int iSub, Event& event, bool skipTrivial) {
318 
319  // Partons may already have been collected, e.g. at ministring collapse.
320  if (singlets[iSub].isCollected) return;
321  singlets[iSub].isCollected = true;
322 
323  // Check if partons already "by chance" happen to be ordered.
324  bool inOrder = true;
325  for (int i = 0; i < singlets[iSub].size() - 1; ++i) {
326  int iFirst = singlets[iSub].iParton[i];
327  if (iFirst < 0) continue;
328  int iSecond = singlets[iSub].iParton[i + 1];
329  if (iSecond < 0) iSecond = singlets[iSub].iParton[i + 2];
330  if (iSecond != iFirst + 1) { inOrder = false; break;}
331  }
332 
333  // Normally done if in order, but sometimes may need to copy anyway.
334  if (inOrder && skipTrivial) return;
335 
336  // Copy down system. Update current partons.
337  for (int i = 0; i < singlets[iSub].size(); ++i) {
338  int iOld = singlets[iSub].iParton[i];
339  if (iOld < 0) continue;
340  int iNew = event.copy(iOld, 71);
341  singlets[iSub].iParton[i] = iNew;
342  }
343 
344  // Done.
345 }
346 
347 //--------------------------------------------------------------------------
348 
349 // Find to which singlet system a particle belongs.
350 
351 int ColConfig::findSinglet(int i) {
352 
353  // Loop through all systems and all members in them.
354  for (int iSub = 0; iSub < int(singlets.size()); ++iSub)
355  for (int iMem = 0; iMem < singlets[iSub].size(); ++iMem)
356  if (singlets[iSub].iParton[iMem] == i) return iSub;
357 
358  // Done without having found particle; return -1 = error code.
359  return -1;
360 }
361 
362 //--------------------------------------------------------------------------
363 
364 // List all currently identified singlets.
365 
366 void ColConfig::list(ostream& os) const {
367 
368  // Header. Loop over all individual singlets.
369  os << "\n -------- Colour Singlet Systems Listing -------------------\n";
370  for (int iSub = 0; iSub < int(singlets.size()); ++iSub) {
371 
372  // List all partons belonging to each singlet.
373  os << " singlet " << iSub << " contains " ;
374  for (int i = 0; i < singlets[iSub].size(); ++i)
375  os << singlets[iSub].iParton[i] << " ";
376  os << "\n";
377 
378  // Done.
379  }
380 }
381 
382 //==========================================================================
383 
384 // The StringRegion class.
385 
386 // Currently a number of simplifications, in particular ??
387 // 1) No popcorn baryon production.
388 // 2) Simplified treatment of pT in stepping and joining.
389 
390 //--------------------------------------------------------------------------
391 
392 // Constants: could be changed here if desired, but normally should not.
393 // These are of technical nature, as described for each.
394 
395 // If a string region is smaller thsan this it is assumed empty.
396 const double StringRegion::MJOIN = 0.1;
397 
398 // Avoid division by zero.
399 const double StringRegion::TINY = 1e-20;
400 
401 //--------------------------------------------------------------------------
402 
403 // Set up four-vectors for longitudinal and transverse directions.
404 
405 void StringRegion::setUp(Vec4 p1, Vec4 p2, bool isMassless) {
406 
407  // Simple case: the two incoming four-vectors guaranteed massless.
408  if (isMassless) {
409 
410  // Calculate w2, minimum value. Lightcone directions = input.
411  w2 = 2. * (p1 * p2);
412  if (w2 < MJOIN*MJOIN) {isSetUp = true; isEmpty = true; return;}
413  pPos = p1;
414  pNeg = p2;
415 
416  // Else allow possibility of masses for incoming partons (also gluons!).
417  } else {
418 
419  // Generic four-momentum combinations.
420  double m1Sq = p1 * p1;
421  double m2Sq = p2 * p2;
422  double p1p2 = p1 * p2;
423  w2 = m1Sq + 2. * p1p2 + m2Sq;
424  double rootSq = pow2(p1p2) - m1Sq * m2Sq;
425 
426  // If crazy kinematics (should not happen!) modify energies.
427  if (w2 <= 0. || rootSq <= 0.) {
428  if (m1Sq < 0.) m1Sq = 0.;
429  p1.e( sqrt(m1Sq + p1.pAbs2()) );
430  if (m2Sq < 0.) m2Sq = 0.;
431  p2.e( sqrt(m2Sq + p2.pAbs2()) );
432  p1p2 = p1 * p2;
433  w2 = m1Sq + 2. * p1p2 + m2Sq;
434  rootSq = pow2(p1p2) - m1Sq * m2Sq;
435  }
436 
437  // If still small invariant mass then empty region (e.g. in gg system).
438  if (w2 < MJOIN*MJOIN) {isSetUp = true; isEmpty = true; return;}
439 
440  // Find two lightconelike longitudinal four-vector directions.
441  double root = sqrt( max(TINY, rootSq) );
442  double k1 = 0.5 * ( (m2Sq + p1p2) / root - 1.);
443  double k2 = 0.5 * ( (m1Sq + p1p2) / root - 1.);
444  pPos = (1. + k1) * p1 - k2 * p2;
445  pNeg = (1. + k2) * p2 - k1 * p1;
446  }
447 
448  // Find two spacelike transverse four-vector directions.
449  // Begin by picking two sensible trial directions.
450  Vec4 eDiff = pPos / pPos.e() - pNeg / pNeg.e();
451  double eDx = pow2( eDiff.px() );
452  double eDy = pow2( eDiff.py() );
453  double eDz = pow2( eDiff.pz() );
454  if (eDx < min(eDy, eDz)) {
455  eX = Vec4( 1., 0., 0., 0.);
456  eY = (eDy < eDz) ? Vec4( 0., 1., 0., 0.) : Vec4( 0., 0., 1., 0.);
457  } else if (eDy < eDz) {
458  eX = Vec4( 0., 1., 0., 0.);
459  eY = (eDx < eDz) ? Vec4( 1., 0., 0., 0.) : Vec4( 0., 0., 1., 0.);
460  } else {
461  eX = Vec4( 0., 0., 1., 0.);
462  eY = (eDx < eDy) ? Vec4( 1., 0., 0., 0.) : Vec4( 0., 1., 0., 0.);
463  }
464 
465  // Then construct orthogonal linear combinations.
466  double pPosNeg = pPos * pNeg;
467  double kXPos = eX * pPos / pPosNeg;
468  double kXNeg = eX * pNeg / pPosNeg;
469  double kXX = 1. / sqrt( 1. + 2. * kXPos * kXNeg * pPosNeg );
470  double kYPos = eY * pPos / pPosNeg;
471  double kYNeg = eY * pNeg / pPosNeg;
472  double kYX = kXX * (kXPos * kYNeg + kXNeg * kYPos) * pPosNeg;
473  double kYY = 1. / sqrt(1. + 2. * kYPos * kYNeg * pPosNeg - pow2(kYX));
474  eX = kXX * (eX - kXNeg * pPos - kXPos * pNeg);
475  eY = kYY * (eY - kYNeg * pPos - kYPos * pNeg - kYX * eX);
476 
477  // Done.
478  isSetUp = true;
479  isEmpty = false;
480 
481 }
482 
483 //--------------------------------------------------------------------------
484 
485 // Project a four-momentum onto (x+, x-, px, py).
486 
487 void StringRegion::project(Vec4 pIn) {
488 
489  // Perform projections by four-vector multiplication.
490  xPosProj = 2. * (pIn * pNeg) / w2;
491  xNegProj = 2. * (pIn * pPos) / w2;
492  pxProj = - (pIn * eX);
493  pyProj = - (pIn * eY);
494 
495 }
496 
497 //==========================================================================
498 
499 // The StringSystem class.
500 
501 //--------------------------------------------------------------------------
502 
503 // Set up system from parton list.
504 
505 void StringSystem::setUp(vector<int>& iSys, Event& event) {
506 
507  // Figure out how big the system is. (Closed gluon loops?)
508  sizePartons = iSys.size();
509  sizeStrings = sizePartons - 1;
510  sizeRegions = (sizeStrings * (sizeStrings + 1)) / 2;
511  indxReg = 2 * sizeStrings + 1;
512  iMax = sizeStrings - 1;
513 
514  // Reserve space for the required number of regions.
515  system.clear();
516  system.resize(sizeRegions);
517 
518  // Set up the lowest-lying regions.
519  for (int i = 0; i < sizeStrings; ++i) {
520  Vec4 p1 = event[ iSys[i] ].p();
521  if ( event[ iSys[i] ].isGluon() ) p1 *= 0.5;
522  Vec4 p2 = event[ iSys[i+1] ].p();
523  if ( event[ iSys[i+1] ].isGluon() ) p2 *= 0.5;
524  system[ iReg(i, iMax - i) ].setUp( p1, p2, false);
525  }
526 
527 }
528 
529 //==========================================================================
530 
531 } // end namespace Pythia8
Definition: AgUStep.h:26