This set of analysis was done in preparation to PAC presentation at BNL, May 2008, ( Jan)
Definitions:
S1,S2 - "signal" yields for 2 spins states (helicity) "1", "2" , S1+S2=S
B1,B2 - "background" yields for 2 spins states "1", "2" , B1+B2=B
N1=S1+B1; N2=S2+B2; N1+N2=N=S+B - "raw" yields measured in real experiment
Assumptions:
ALraw=(N1-N2)/(N1+N2)= (S1-S2)/(S+B); V(ALraw)= 4*N1*N2/N3
I used capital & small letters to distinguish this two experiments.
Problem: find statistical error of 'signal' asymmetry:
ALsig= (S1-S2)/S
Solution:
Model predictions of A_L for W+, W- , used files:
rb800.w+pola_grsv00_2.root, rb800.w-pola_grsv00_2.root, rb800.w+unp_ct5m.root rb800.w-unp_ct5m.root
LT=800/pb,
Brown oval shows approximate coverage of IST+FGT
Red diamond shows region with max A_L and ... little yield.
From Brian, e/h algo ver 2.4, LT=800/pb.
This version uses only tower seed in bin 6-11, this is main reason efficiency is of 40%.
I'll assume in further calculation the W-reco efficiency is of 70%, flat in lepton PT>20 GeV.
Left: W-yield black=input, green - after cut 15.
Right: ratio. h->Smooth() was used for some histos.
PT=20.6 sum1= 1223 PT=25.6 sum1= 1251 sum2= 473 att=1/2.6 PT=30.6 sum1= 987 sum2= 406 att=1/2.4 PT=35.6 sum1= 771 sum2= 343 att=1/2.2 PT=40.6 sum1= 372 sum2= 166 att=1/2.2 PT=45.6 sum1= 74 sum2= 16 att=1/4.6
From Brian, e/h algo ver 2.4, LT=800/pb. h->Smooth() was used for some histos.
This version uses only tower seed in bin 6-11
Left: QCD-yield black=input, green - after cut 15.
Right: ratio= QCD attenuation, not the a;go gets ~3x 'weaker' at PT =[34-37] GeV , exactly where we need it the most
PT averaged attenuation of QCD events
PT=20.6 sum1=2122517 PT=25.6 sum1=528917 sum2=3992 att=1/133 PT=30.6 sum1=135252 sum2= 736 att=1/184 PT=35.6 sum1= 38226 sum2= 320 att=1/120 PT=40.6 sum1= 11292 sum2= 127 att=1/89 PT=45.6 sum1= 3153 sum2= 41 att=1/77
From Brian. h->Smooth() was used for some histos.
Left: final yield of QCD events (blue) and W-events (green) after e/h algo.
Right: ratio.
I'll assume w=b/s is better than the red line, a continuous ET dependence:
w(pt=20)=10
w(pt=25)=1.
w(pt=40)=0.5
PT=25.6 sum1= 3992 sum2= 473 att=1/8.4 PT=30.6 sum1= 736 sum2= 406 att=1/1.8 PT=35.6 sum1= 320 sum2= 343 att=1/0.9 PT=40.6 sum1= 127 sum2= 166 att=1/0.8 PT=45.6 sum1= 41 sum2= 16 att=1/2.5
Assumed LT=800/pb
fpol=new TFile("rb800.w+pola_grsv00_2.root"); <--GRSV-VAL (maximal W polarization)
funp=new TFile("rb800.w+unp_ct5m.root");
histo 215
Total W+ yield for lepton ET[20,45] GeV and eta [1,2] is of 7101 for unpolarized cross section and of -2556 for the helicity dependent part.
Assuming 70% beam polarization measured spin dependent asymmetry:
eps_L= P* del/sum= -0.25 +/-0.012
(assuming err(eps)=1/sqrt(sum) )
Fig 1 , W+ : top row - unpol & pol cross section GRSV-VAL (maximal W polarization),
bottom left: integrated over eta, black=unpol, red=pol
bottom right: asy=P *pol/unpol vs. lepton PT, green=fit
Total W- yield for lepton ET[20,45] GeV and eta [1,2] is of 5574 for unpolarized cross section and of +2588 for the helicity dependent part.
fpol=new TFile("rb800.w-pola_grsv00_2.root");
funp=new TFile("rb800.w-unp_ct5m.root");
histo 215
Assuming 70% beam polarization measured spin dependent asymmetry:
eps_L= P* del/sum= +0.325 +/-0.013
Fig 2. W- GRSV-VAL (maximal W polarization)
Assumptions:
lepton PT range | w=backg/signal |
20-25 GeV | 5.0 +/- 10% |
25-30 GeV | 1.0 +/- 10% |
30-35 GeV | 0.8 +/- 10% |
35-40 GeV | 0.7 +/- 10% |
40-45 GeV | 0.6 +/- 10% |
Formulas:
Left : N1(PT)=red, N2(PT) blue. Right: reconstructed signal AL
ipt=0 y-bins=[41,50] unpol=1826.5 pol=-327.3 AL=-0.125 +/- 0.0234 QA=1.8 B2S=5.0 , N1=3721 N2=3950 ALraw=-0.021 +/- 0.011, dil=6.00 ALsig=-0.125 +/- 0.069 ipt=1 y-bins=[51,60] unpol=1403.0 pol=-265.8 AL=-0.133 +/- 0.0267 QA=2.9 B2S=1.0 , N1=889 N2=1075 ALraw=-0.066 +/- 0.023, dil=2.00 ALsig=-0.133 +/- 0.046 ipt=2 y-bins=[61,70] unpol=1233.7 pol=-384.7 AL=-0.218 +/- 0.0285 QA=4.7 B2S=0.8 , N1=643 N2=912 ALraw=-0.121 +/- 0.025, dil=1.80 ALsig=-0.218 +/- 0.047 ipt=3 y-bins=[71,80] unpol=1811.9 pol=-1041.9 AL=-0.403 +/- 0.0235 QA=10.0 B2S=0.7 , N1=713 N2=1443 ALraw=-0.237 +/- 0.022, dil=1.70 ALsig=-0.403 +/- 0.040 ipt=4 y-bins=[81,90] unpol=808.8 pol=-525.2 AL=-0.455 +/- 0.0352 QA=8.1 B2S=0.6 , N1=269 N2=637 ALraw=-0.284 +/- 0.033, dil=1.60 ALsig=-0.455 +/- 0.056 sum2=7084.000000 sum3=-2544.850098 asy=-0.251
ipt=0 y-bins=[41,50] unpol=1239.1 pol=490.8 AL=0.277 +/- 0.0284 QA=3.2 B2S=5.0 , N1=2774 N2=2430 ALraw=0.046 +/- 0.014, dil=6.00 ALsig=0.277 +/- 0.086 ipt=1 y-bins=[51,60] unpol=1452.7 pol=641.2 AL=0.309 +/- 0.0262 QA=6.6 B2S=1.0 , N1=1241 N2=792 ALraw=0.154 +/- 0.022, dil=2.00 ALsig=0.309 +/- 0.047 ipt=2 y-bins=[61,70] unpol=1426.5 pol=689.9 AL=0.339 +/- 0.0265 QA=7.5 B2S=0.8 , N1=1140 N2=657 ALraw=0.188 +/- 0.024, dil=1.80 ALsig=0.339 +/- 0.045 ipt=3 y-bins=[71,80] unpol=1135.3 pol=596.1 AL=0.368 +/- 0.0297 QA=7.6 B2S=0.7 , N1=884 N2=467 ALraw=0.216 +/- 0.027, dil=1.70 ALsig=0.368 +/- 0.049 ipt=4 y-bins=[81,90] unpol=313.8 pol=166.4 AL=0.371 +/- 0.0565 QA=4.3 B2S=0.6 , N1=234 N2=117 ALraw=0.232 +/- 0.053, dil=1.60 ALsig=0.371 +/- 0.086 sum2=5567.280273 sum3=2584.398926 asy=0.325
Fig 5. W+ GRSV-VAL (maximal W polarization)
Fig 6. W- GRSV-VAL (maximal W polarization)
Input from RHICBOS , GRSV-VAL model:
if(Wsign==1) { fpol=new TFile("rb800.w+pola_grsv00_2.root"); funp=new TFile("rb800.w+unp_ct5m.root"); WPM="W+ "; } else { fpol=new TFile("rb800.w-pola_grsv00_2.root"); funp=new TFile("rb800.w-unp_ct5m.root"); WPM="W- "; }
The sign of pol cross section from RHICBOS has reversed convention, I have changed it to Medison convention.
hpol->Scale(-1.);
from my macro, compare bottom right to blue from fig 2a
from my macro, compare bottom right to blue from fig 2b
A | B | C |
---|---|---|
ET_range (EEMC 3x3_cluster) |
assumed w=backg/signal | QCD eve suppression needed for(B) |
20-25 GeV | 5.0 +/- 20% | - (for W+ or W-) |
25-30 GeV | 1.0 +/- 20% | 1/539 or 1/520 |
30-35 GeV | 0.8 +/- 20% | 1/196 or 1/169 |
35-40 GeV | 0.7 +/- 20% | 1/43 or 1/ 69 |
40-45 GeV | 0.6 +/- 20% | 1/33 or 1/86 |
45-50 GeV | 0.5 +/- 20% | 1/119 or 1/289 |
Formulas:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
reco EMC ET GeV
|
reco W+ yield helicity: S1, S2 |
reco W+ unpol yield |
QCD Pythia accepted yield |
assumed B/S |
reco signal AL+err |
reco AL/err |
AL dilution: 1+B/S |
QCD yield w/ EMC cluster |
needed QCD suppression *) |
20-25 | 242 ,236 | 479 | 2397 | 5.0 | 0.019 +/-0.160 | 0.1 | 6.00 | ||
25-30 | 192 ,176 | 368 | 368 | 1.0 | 0.062 +/-0.105 | 0.6 | 2.00 | 198343 | 1/539 |
30-35 | 190 ,133 | 323 | 259 | 0.8 | 0.249 +/-0.109 | 2.3 | 1.80 | 50719 | 1/196 |
35-40 | 333 ,141 | 475 | 332 | 0.7 | 0.576 +/-0.098 | 5.9 | 1.70 | 14334 | 1/43 |
40-45 | 151,61 | 212 | 127 | 0.6 | 0.606 +/-0.132 | 4.6 | 1.60 | 4234 | 1/33 |
45-50 | 13,6 | 19 | 9 | 0.5 | 0.457 +/-0.393 | 1.2 | 1.50 | 1182 | 1/119 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
reco EMC ET GeV
|
reco W+ yield helicity: S1, S2 |
reco W- unpol yield |
QCD Pythia accepted yield |
assumed B/S |
reco signal AL+err |
reco AL/err |
AL dilution: 1+B/S |
QCD yield w/ EMC cluster |
needed QCD suppression *) |
20-25 | 116,208 | 325 | 1626 | 5.0 | -0.403 +/-0.205 | 2.0 | 6.00 | ||
25-30 | 133,248 | 381 | 381 | 1.0 | -0.431 +/-0.112 | 3.8 | 2.00 | 198343 | 520 |
30-35 | 126,247 | 374 | 299 | 0.8 | -0.461 +/-0.107 | 4.3 | 1.80 | 50719 | 169 |
35-40 | 97,200 | 298 | 208 | 0.7 | -0.495 +/-0.115 | 4.3 | 1.70 | 14334 | 69 |
40-45 | 26,55 | 82 | 49 | 0.6 | -0.506 +/-0.203 | 2.5 | 1.60 | 4234 | 86 |
45-50 | 2,5 | 8 | 4 | 0.5 | -0.521 +/-0.617 | 0.8 | 1.50 | 1182 | 293 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
reco EMC ET GeV
|
reco W+ yield helicity: S1, S2 |
reco W- unpol yield |
QCD Pythia accepted yield |
assumed B/S |
reco signal AL+err |
reco AL/err |
AL dilution: 1+B/S |
QCD yield w/ EMC cluster |
needed QCD suppression *) |
20-25 | 316,168 | 484 | 2424 | 5.0 | 0.436 +/-0.175 | 2.5 | 6.00 | ||
25-30 | 235,137 | 373 | 373 | 1.0 | 0.375 +/-0.111 | 3.4 | 2.00 | 198343 | 531 |
30-35 | 189,132 | 322 | 258 | 0.8 | 0.252 +/-0.109 | 2.3 | 1.80 | 50719 | 196 |
35-40 | 255,223 | 479 | 335 | 0.7 | 0.094 +/-0.085 | 1.1 | 1.70 | 14334 | 43 |
40-45 | 109,102 | 212 | 127 | 0.6 | 0.048 +/-0.124 | 0.4 | 1.60 | 4234 | 33 |
45-50 | 10,9 | 19 | 9 | 0.5 | 0.027 +/-0.393 | 0.1 | 1.50 | 1182 | 119 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
reco EMC ET GeV
|
reco W+ yield helicity: S1, S2 |
reco W- unpol yield |
QCD Pythia accepted yield |
assumed B/S |
reco signal AL+err |
reco AL/err |
AL dilution: 1+B/S |
QCD yield w/ EMC cluster |
needed QCD suppression *) |
20-25 | 157,151 | 308 | 1544 | 5.0 | 0.024 +/-0.199 | 0.1 | 6.00 | 795943 | 515 |
25-30 | 187,180 | 367 | 367 | 1.0 | 0.029 +/-0.105 | 0.3 | 2.00 | 198343 | 540 |
30-35 | 187,179 | 367 | 293 | 0.8 | 0.033 +/-0.100 | 0.3 | 1.80 | 50719 | 173 |
35-40 | 151,144 | 295 | 206 | 0.7 | 0.033 +/-0.108 | 0.3 | 1.70 | 14334 | 69 |
40-45 | 41,40 | 81 | 49 | 0.6 | 0.026 +/-0.200 | 0.1 | 1.60 | 4234 | 86 |
45-50 | 3,3 | 7 | 3 | 0.5 | 0.012 +/-0.624 | 0.0 | 1.50 | 1182 | 301 |
FGT 6 identical disk have active area Rin=11.5 cm, Rout=37.6 cm;
Z location: 70,80,90, 100,110,120 cm with respect to STAR ref frame.
Unpolarized yield for W+, RHICBOS
Unpolarized yield for W-, RHICBOS
Unpolarized & pol yield for W+, RHICBOS, ideal detector
Unpolarized & pol yield for W-, RHICBOS, ideal detector
Fig 1 - Ideal detector
Fig 2 - Realistic detector efficiency & hadronic background, ideal charge reco
kinematics | LT=300/pb | LT=100/pb |
---|---|---|
W+, forward | 8.6 | 5.3 |
W-, forward | 6.7 | 3.9 |
W+, backward | 5.1 | 3.0 |
W-, backward | 0.3 | 0.2 |
kinematics | LT=300/pb | LT=100/pb |
---|---|---|
W+, forward | 8.6 | 5.3 |
W-, forward | 8.2 | 4.7 |
W+, backward | 5.9 | 3.4 |
W-, backward | 3.9 | 2.3 |
Fig 3 - Realistic detector efficiency, hadronic background, and charge reco
missing
Plots show AL for W+, W- as function of ET (fig1) and eta (fig2,3)
I assumed beam pol=70%, electron/positron reco off 70%, QCD background included, no vertex cut (as for all earlier analysis).
For AL(ET) I integrated over eta [-2,-1] or [1,2] and assumed the following B/S(ET) = 5.0 for ET>20 GEV, 1.0 for ET>25, 0.9 for ET>30,....
For AL(Eta) I integrated over ET>25 GeV and assumed a constant in eta & ET B/S=0.8.
Fig 1. AL(ET). Only Endcap coverage is shown. ( EPS.zip )
Fig 2. AL(Eta) . Only Endcap coverage is shown. ( EPS.zip )
Fig 3. AL(Eta) has continuous eta-axis, binning is exactly the same as in Fig 2. It includes Endcap & Barrel coverage.
(PS.gz) generated by take2/do5.C, doAll21()
Plots show AL for W+, W- as function of ET (fig1,2) and eta (fig3)
I assumed beam pol=70%, electron/positron reco off 70%, no vertex cut (as for all earlier analysis).
NO QCD background dilution.
For AL(ET) I integrated over eta [-2,-1] , [-1,+1], or [1,2] and assumed no background
For AL(Eta) I integrated over ET>25 GeV and assumed no background
Fig 1 ( PS.zip )
Fig 2 ( PS.zip )
Accounted for 2 beams at mid rapidity.
Fig 3
Common assumptions:
This page is tricky, different assumptions/definitions are used for different eta ranges.
determine the degree to which we can measure an asymmetry different from zero.
LT=100/pb | LT=300/pb | |
W+, forward | 0.27 | 0.15 |
W-, forward | 0.30 | 0.18 |
I fit constant to the black points what is equivalent to taking the weighted average.
determine the ratio of difference of DNS-MIN and DNS-MAX to sigma(measured AL)
avr(ALMIN-ALMAX) | LT=100/pb | LT=300/pb | |
W+, mid | 0.15 | 13 | 21 |
W-, mid | 0.34 | 13 | 22 |
C) Backward rapidity: eta range [-2,-1], (shown on fig 1c+d in study 7 revised for White Paper, AL(eta), AL(ET) , (Jan))
determine the ratio of difference of DNS-MIN and DNS-MAX to sigma(measured AL)
avr(ALMIN-ALMAX) | LT=100/pb | LT=300/pb | |
W+, backward | 0.10 | 1 | 2 |
W-, backward | 0.5 | 5 | 9 |
determine the ratio of difference of DNS-MIN and DNS-MAX to sigma(measured AL)
avr(ALMIN-ALMAX) | LT=100/pb | LT=300/pb | |
W+, mid | 0.15 | 7 | 11 |
W-, mid | 0.34 | 10 | 15 |
Common assumptions:
Dashed area denotes pt-averaged statistical error of STAR measurement.
Projection of STAR sensitivity for AL for W+,W- at mid rapidity for LT=10/pb and pol=60% or 50%
Common assumptions:
beam pol | avr AL(W+)THEORY=0.35 | . | avr AL(W-)THEORY=0.15 | ||
---|---|---|---|---|---|
sig ALSTAR | STAR signifcance | sig ALSTAR | STAR signifcane | ||
50% | 0.092 | 3.8 sigma | 0.18 | 0.8 sigma | |
60% | 0.077 | 4.6 sigma | 0.15 | 1 sigma |