Time Dependency in BEMC Gains

In an attempt to confirm the findings made by Adam Kocoloski (see here), to perhaps determine where time-dependency is occurring in the BEMC (assuming that there is any localization), and to extend the analysis to 2008 data, we have created and applied analysis tools to off-line EMC calibration data, analyzing ADC tower response with regard to time.  This work directly extends the analysis tools developed by Matthew Walker, and uses the EMC off-line calibration data that he maintains.

A sample of our results is shown below for 2006 data:

Figure 1: 2006 Eta Bin 9 mip Peak Positions Over Time

Figure 2: 2006 Chi^2 versus Eta Bin

Figure 3: 2006 Eta Bin 9 mip Peak Positions Over Time Using Weighted Average Over 4 Values

Figure 4: 2006 Chi^2 versus Eta Bin for Weighted Averages

Originally, we had intended to examine every tower on every run and attempt to track tower gains individually, creating histograms for mip position at each pairing.  We tried this first with the 2008 data, but this proved unworkable as there simply were not enough events to analyze tower/run gains individually.  We found, however, that if we accumulated histograms for eta bins over fills, occupancy was much better and analysis could be performed.  This technique was extended to the 2006 data.

Once histogram creation was complete, for each eta bin/fill histogram we then attempted to apply a Gaussian fit across ADC tower responses.  We discovered a number of irregularities in attempting to apply this fit, so many so that we abandoned the legacy Gaussian fit methodology and instead used a Landau fit.  This appeared to give far fewer errors during the fit process, and also appeared to fit the ADC tower response histograms better than a Gaussian fit.  However, this fit did not work perfectly, both because there were histograms with too few events to even attempt a Landau fit, and because the fit applied incorrectly to some histograms.  Histograms that could not be fit appeared to have three to five events, probably corresponding to three or fewer bins with occupancy.  When a fit was attempted for these histograms, zero or fewer degrees of freedom were reported by root.  We eliminated these bin/fill histograms from our consideration since they could not yield statistically significant results.  We were able to correct the fits in the second category somewhat.  If a naive Landau fit gave a peak result of less than zero, which is not a reasonable fit since it fails to reflect any physical phenomenon, we attempted to correct that fit by eliminating bins over 100 ADC tower response in the fit.   Note that this correction was only applied to 2006 data.  Out of 220 known bad fits (fits with ADC tower response less than zero), 60 fits could be corrected in this way.  This left 160 towers with less than zero ADC tower response.  A table of low occupancy bin/fill histograms and known bad bin/fill histograms can be found at the end of this post.

The histograms with their associated Landau fits for 2006 data can be found here, and for 2008 data can be found here.  Examining these histograms will reveal that the 2008 data has events well below zero in many of the histograms.  The 2006 histograms also display negative events, but this is not nearly as prevalent in the 2006 data as in the 2008 data.  These negative ADC responses are apparently due to a zero ADC tower response in the calibration data which then has a pedestal correction applied.  Our analysis suggested that the 2006 data is successfully filtering out most towers that would give rise to negative events, but the 2008 data is not.  The method for filtering events has not changed from the 2006 data set to the 2008 data set (we use status tables as our primary filtering mechanism), and we are uncertain why this problem is occurring.  Also, please note that there is a relatively low-occupancy "zero" fill present in the 2006 data.  This fill number was included in the off-line calibration data, and we are uncertain at this time as to the correct fill number(s) for this data.  Finally, in the 2006 fits, histograms that were re-fit with ADC tower response bins over 100 eliminated from the fit will appear with a red fit line rather than a yellow fit line.

The final results of this analysis gives us mip peaks over time.  Plots of the mip peaks over time for the each eta bin for the 2006 off-line calibration data are available here.  One of these plots can be seen in Figure 1 for the 9th eta bin.

For each of these plots, eta bin 1 corresponds to eta = -1, eta = 0 occurs between eta bins 20 and 21, and eta bin 40 corresponds to eta = 1 (fill number mappings are provided at the end of this article).  On each plot the Landau peak error is also shown, calculated using GetParError(1).  In green, the mip mean values and associated errors are also ploted for comparison.  Finally, a constant linear fit has been applied to each graph.

Once these plots were created, we calculated the chi^2 for each eta bin.  The chi^2 per eta bin is plotted in Figure 2 and included in the 2006 data analysis results file.  There appears to be significant deviation from the fit in Figure 1, as well as in the graphs of the other eta bins, suggesting that there is a time dependence in the information captured by the BEMC.  This is further supported by the large chi^2 values in Figure 2.  For clarity, a weighted average of every 4 fills was calculated and plotted and a constant linear fit applied.  These results are included in the data analysis results file, and an example can be seen in Figure 3 for eta bin 9.  Finally, for completeness, the chi^2 for the graphed weighted averages was calculated.  This plot can be seen in Figure 4.

This same process was repeated for the 2008 data:

Figure 5: 2008 Eta Bin 9 mip Peak Positions Over Time

Figure 6: 2008 Chi^2 versus Eta Bin

There was significantly less usable 2008 data, and while weighted averaging was completed, it was not necessary to see trends in the data.  There does appear to be some significant time-related deviation in the first four fills, but overall time-dependence in the 2008 data is not nearly so pronounced as in the 2006 data.

For a complete set of mip position fits, data graphs, and chi^2 graphs, including the weighted average graphing for the 2008 data, see the following two PDF files:

gainsOverTimeRebin2006(2).pdf

gainsOverTimeRebin2008(2).pdf

It is possible, from the archived postscript files linked above to determine the mapping from actual fill numbers to the "Fill Time" on the individual eta bin mip position graphs.  However, for ease of use, a table of mappings is provided here:

2006 Fills

1 0
2 7603
3 7622
4 7627
5 7630
6 7632
7 7637
8 7639
9 7641
10 7642
11 7645
12 7646
13 7651
14 7652
15 7654
16 7655
17 7657
18 7658
19 7662
20 7671
21 7672
22 7673
23 7674
24 7681
25 7685
26 7688
27 7691
28 7697
29 7699
30 7718
31 7722
32 7724
33 7725
34 7729
35 7739
36 7740
37 7744
38 7745
39 7753
40 7756
41 7757
42 7780
43 7781
44 7785
45 7786
46 7788
47 7789
48 7790
49 7791
50 7792
51 7794
52 7795
53 7796
54 7797
55 7800
56 7803
57 7804
58 7805
59 7810
60 7811
61 7815
62 7817
63 7820
64 7823
65 7824
66 7825
67 7826
68 7827
69 7830
70 7831
71 7847
72 7850
73 7851
74 7852
75 7853
76 7855
77 7856
78 7858
79 7863
80 7864
81 7865
82 7871
83 7872
84 7883
85 7886
86 7887
87 7889
88 7890
89 7891
90 7892
91 7893
92 7896
93 7901
94 7908
95 7909
96 7911
97 7913
98 7915
99 7916
100 7918
101 7921
102 7922
103 7926
104 7944
105 7946
106 7949
107 7951
108 7952
109 7954
110 7957

2008 Fills

1 9880
2 9884
3 9885
4 9888
5 9890
6 9897
7 9898
8 9902
9 9905
10 9906
11 9909
12 9910
13 9919
14 9920
15 9935
16 9938
17 9939
18 9940
19 9942
20 9947
21 9948
22 9965
23 9966
24 9971
25 9972
26 9973
27 9974
28 9975
29 9977
30 9981

The complete code used to generate these graphs and histograms can be found here.

2006 Chi^2 Information for Non-Weighted Average Plots

Eta Bin Chi^2 NDF Chi^2/NDF
1 295.022 109 2.70663
2 217.36 109 1.99413
3 239.323 109 2.19563
4 302.13 109 2.77184
5 187.008 109 1.71567
6 262.81 109 2.4111
7 296.904 109 2.72389
8 372.264 109 3.41527
9 234.632 109 2.15259
10 197.129 109 1.80853
11 294.355 109 2.70051
12 268.893 109 2.46691
13 274.438 109 2.51778
14 206.787 109 1.89713
15 331.437 109 3.04071
16 331.695 109 3.04308
17 305.638 109 2.80402
18 258.893 109 2.37517
19 270.777 109 2.4842
20 337.333 109 3.09479
21 273.295 109 2.5073
22 314.346 109 2.88391
23 349.383 109 3.20535
24 304.127 109 2.79016
25 342.458 109 3.14182
26 225.758 109 2.07118
27 282.544 109 2.59215
28 208.527 109 1.91309
29 249.901 109 2.29267
30 300.904 109 2.76059
31 228.167 109 2.09328
32 262.696 109 2.41006
33 269.699 109 2.47431
34 252.759 109 2.31889
35 326.472 109 2.99516
36 282.107 109 2.58814
37 323.608 109 2.96888
38 224.126 109 2.05621
39 209.165 109 1.91895
40 238.978 109 2.19246

2008 Chi^2 Information for Non-Weighted Average Plots

Eta Bin Chi^2 NDF Chi^2/NDF
1 48.4772 29 1.67163
2 35.8566 29 1.23644
3 50.6746 29 1.7474
4 30.7782 29 1.06132
5 19.1974 29 0.661978
6 49.6863 29 1.71332
7 44.0364 29 1.51849
8 105.2 29 3.62759
9 34.4464 29 1.18781
10 54.6936 29 1.88599
11 50.5857 29 1.74434
12 24.2633 29 0.836667
13 42.7737 29 1.47496
14 61.6484 29 2.12581
15 51.223 29 1.76631
16 33.8621 29 1.16766
17 57.1911 29 1.97211
18 33.6553 29 1.16053
19 48.4714 29 1.67143
20 65.0013 29 2.24142
21 51.4812 29 1.77521
22 40.7595 29 1.4055
23 24.4869 29 0.844377
24 56.7946 29 1.95843
25 60.9415 29 2.10143
26 50.6547 29 1.74671
27 36.6322 29 1.26318
28 55.6407 29 1.91865
29 32.8781 29 1.13373
30 83.8703 29 2.89208
31 49.4795 29 1.70619
32 26.7862 29 0.923662
33 51.5886 29 1.77892
34 33.0107 29 1.1383
35 31.6231 29 1.09045
36 43.4897 29 1.49965
37 24.2453 29 0.836044
38 62.0586 29 2.13995
39 50.4847 29 1.74085
40 81.4427 29 2.80837

Below are 3D graphs of the bin/fill mip peak deviations and weighted deviations from the mean, both corrected by elimination of the known bad and low occupancy points, and without those corrections.

Row 1:  Starting with the unweighted, uncorrected peak deviations from the mean (calculated using the formula (peak-mean)/mean):

Row 2: Next, the uncorrected weighted deviations (calculated using the formula (peak-mean)/error):

Row 3: Next, the corrected peak deviations from the mean (calculated using the formula (peak-mean)/mean):

Row 4: Finally, the corrected weighted deviations (calculated using the formula (peak-mean)/error):

 

Most Significant High/Low Deviation Fills per Eta

Eta Min Fill Max Fill
Fill Peak Peak Error Deviation Ratio of Deviation to Mean Weighted Deviation Fill Peak Peak Error Deviation Ratio of Deviation to Mean Weighted Deviation
1 7792 16.2562 0.501869 -2.69236 -0.142088 -5.36466 7725 20.8232 0.371838 1.87463 0.0989326 5.04153
2 7810 16.2683 0.236415 -1.06186 -0.0612726 -4.49152 7785 18.0438 0.226746 0.71369 0.041182 3.14753
3 7915 14.9799 0.280195 -1.47054 -0.0893919 -5.24826 7718 17.2329 0.167656 0.782447 0.0475639 4.66698
4 7810 15.4381 0.189028 -0.881331 -0.054005 -4.66243 7780 17.4137 0.20918 1.09429 0.0670542 5.23131
5 7810 16.0383 0.160946 -0.544681 -0.0328457 -3.38425 7901 17.4833 0.276589 0.900283 0.0542894 3.25495
6 7810 15.7845 0.158294 -0.612233 -0.0373387 -3.8677 7780 17.1889 0.191984 0.792101 0.0483084 4.12587
7 7810 15.8564 0.172848 -0.783547 -0.0470882 -4.53315 7780 17.9032 0.18105 1.26321 0.0759143 6.97714
8 7918 15.0875 0.319792 -1.21471 -0.0745116 -3.79842 7780 17.495 0.215598 1.19274 0.073164 5.53222
9 7810 15.7443 0.16654 -0.642799 -0.039226 -3.85972 7780 17.2138 0.172563 0.826756 0.0504518 4.79104
10 7810 15.9281 0.147401 -0.628564 -0.0379644 -4.26431 7789 17.1375 0.16474 0.580794 0.0350792 3.52552
11 7863 15.7782 0.145873 -0.565314 -0.0345896 -3.87538 7780 17.4071 0.1806 1.06363 0.0650795 5.8894
12 7852 15.859 0.14272 -0.484601 -0.0296508 -3.39546 7780 17.37 0.186065 1.02646 0.0628049 5.51666
13 7810 15.0866 0.154509 -0.971244 -0.0604842 -6.286 7780 17.0802 0.209848 1.02243 0.0636716 4.87222
14 7944 15.9961 0.135968 -0.36042 -0.0220353 -2.65077 7780 17.1137 0.211569 0.757174 0.0462919 3.57885
15 7952 15.1289 0.204275 -0.926435 -0.0577026 -4.53524 7780 17.0861 0.17028 1.03078 0.0642013 6.05342
16 7810 15.2906 0.153184 -0.902229 -0.055718 -5.88984 7780 17.3349 0.149164 1.14211 0.0705321 7.65675
17 7810 15.2082 0.160221 -0.840672 -0.0523821 -5.24695 7780 16.8596 0.155612 0.810755 0.0505179 5.2101
18 7957 15.6509 0.155836 -0.60625 -0.0372912 -3.89031 7780 17.2347 0.185434 0.97756 0.0601309 5.27174
19 7913 15.5139 0.200186 -0.765437 -0.0470191 -3.82363 7780 17.482 0.170201 1.20266 0.0738767 7.06612
20 7810 15.7808 0.162136 -0.611816 -0.0373226 -3.77348 7780 17.5456 0.164402 1.15289 0.0703299 7.01266
21 7810 15.6191 0.186332 -0.960491 -0.0579321 -5.15473 7791 17.9363 0.212503 1.35666 0.081827 6.38418
22 7830 15.5136 0.187816 -0.85552 -0.0522643 -4.5551 7791 17.413 0.19692 1.04393 0.0637745 5.3013
23 7944 15.5275 0.139721 -0.714242 -0.0439756 -5.11192 7780 17.2892 0.22595 1.04738 0.0644868 4.63545
24 7810 15.3879 0.166548 -0.786669 -0.0486361 -4.72338 7780 16.9291 0.190463 0.754523 0.0466487 3.96152
25 7921 15.5813 0.216888 -1.09504 -0.0656645 -5.04889 7725 17.2038 0.157401 0.527487 0.0316309 3.35123
26 7810 15.7683 0.170984 -0.709398 -0.043052 -4.14891 7780 17.3236 0.197604 0.845904 0.0513363 4.2808
27 7810 15.7084 0.175843 -0.915948 -0.0550968 -5.2089 7794 18.9072 0.372134 2.28289 0.137322 6.1346
28 7810 15.8663 0.171186 -0.722838 -0.0435731 -4.22253 7789 17.2877 0.170334 0.698628 0.0421137 4.10152
29 7810 16.0881 0.171209 -0.652473 -0.0389756 -3.81098 7780 17.535 0.192011 0.794462 0.0474573 4.13758
30 7810 15.727 0.168284 -0.929602 -0.0558098 -5.524 7780 17.8414 0.190293 1.18479 0.0711304 6.22613
31 7810 16.2059 0.168598 -0.736001 -0.0434426 -4.36542 7780 18.0306 0.204738 1.08866 0.0642586 5.31735
32 7824 16.3659 0.198841 -0.732938 -0.0428647 -3.68605 7788 17.6849 0.13455 0.585999 0.0342712 4.35525
33 7909 16.2428 0.16712 -0.832232 -0.0487398 -4.97985 7780 18.1181 0.196472 1.04307 0.0610875 5.309
34 7896 16.3939 0.162028 -0.499743 -0.0295817 -3.0843 7780 17.8806 0.209768 0.986915 0.0584193 4.70479
35 7810 15.8762 0.181974 -0.921881 -0.05488 -5.066 7780 17.7778 0.220979 0.979659 0.0583196 4.43327
36 7810 16.0521 0.168851 -1.16777 -0.0678156 -6.91601 7639 18.68 0.45097 1.46012 0.0847926 3.23772
37 7810 15.683 0.192899 -1.02627 -0.061419 -5.32023 7729 17.3629 0.173397 0.653616 0.039117 3.76948
38 7957 16.4592 0.179872 -0.726167 -0.0422549 -4.03713 7672 18.3291 0.342754 1.14375 0.0665533 3.33693
39 7810 16.9372 0.222909 -1.02862 -0.0572542 -4.61451 7671 20.0084 0.515087 2.04264 0.113696 3.96561
40 7952 17.0782 0.719276 -2.87938 -0.144275 -4.00316 7724 21.3157 0.317357 1.3581 0.0680492 4.2794

Low Statistic Eta-Fills

Eta Fill # of Events Peak Peak Error Mean Mean Error Deviation Ratio of Deviation to Mean Weighted Deviation Chi^2 DOF Chi^2/DOF
1 7622 1 76.9168 37747.2 64.01 0 57.9682 3.05924 0.0015357 0 -2 -0
2 7627 3 26.3603 337.937 21.0933 1.6238 9.03017 0.521067 0.0267214 7e-06 0  
3 7622 2 24.129 232.466 22.605 5.97859 7.67857 0.46677 0.0330309 0 -1 -0
4 7622 1 49.9168 37747.2 37.44 0 33.5974 2.05873 0.000890063 0 -2 -0
4 7645 3 20.1926 2155.04 12.56 2.44046 3.8732 0.237336 0.00179728 1e-06 0  
5 7622 2 13.5575 151.071 12.54 3.6911 -3.0255 -0.182446 -0.0200271 0 -1 -0
5 7645 3 16.8601 129.956 17.2667 0.392891 0.277071 0.0167081 0.00213203 0 -1 -0
5 7946 3 45.4678 1324.56 23.9167 5.08445 28.8848 1.74183 0.0218071 4e-06 0  
6 7622 2 34.9168 37747.2 22.38 0 18.5201 1.1295 0.000490634 0 -2 -0
7 7622 1 29.9168 37747.2 17.31 0 13.2769 0.79789 0.000351731 0 -2 -0
7 7645 3 29.6874 645.228 19.02 2.57853 13.0475 0.784105 0.0202215 6e-06 0  
8 7627 4 -0.046769 1.74688 17.0425 1.5453 -16.349 -1.00287 -9.35896 0.050738 0  
9 7622 2 17.3893 54.9986 16.865 1.46725 1.00228 0.0611632 0.0182238 0 -1 -0
9 7645 2 16.5575 151.071 15.55 3.77595 0.17046 0.0104021 0.00112835 0 -1 -0
10 7622 2 32.9623 137.425 32.35 3.59917 16.4056 0.990877 0.119379 0 -1 -0
10 7645 3 19.1728 743.2 22.1733 1.75961 2.61617 0.158013 0.00352014 0 -1 -0
12 7622 1 47.9168 37747.2 35 0 31.5732 1.93184 0.000836439 0 -2 -0
12 7627 3 29.4881 687.446 22.0133 1.84261 13.1445 0.804259 0.0191208 1e-06 0  
12 7645 1 34.9168 37747.2 21.65 0 18.5732 1.13642 0.000492043 0 -2 -0
13 7622 2 16.3893 54.9986 15.7 1.27279 0.331535 0.0206463 0.00602805 0 -1 -0
13 7946 3 42.6037 3930.01 23.3933 4.51864 26.5459 1.65315 0.00675467 1e-06 0  
15 7622 3 24.4761 512.419 16.5033 2.19761 8.42072 0.52448 0.0164333 7e-06 0  
16 7622 3 32.3934 702.242 23.34 2.79793 16.2007 1.00049 0.0230699 3e-06 0  
17 7622 2 27.8664 409.688 24.895 10.3556 11.8176 0.736349 0.0288453 0 -1 -0
17 7645 4 66.9798 75.7947 16.155 1.47708 50.931 3.1735 0.67196 0.293459 0  
18 7622 3 26.6959 399.389 20.53 1.5439 10.4387 0.642099 0.0261367 7e-06 0  
18 7645 2 22.3893 54.9986 22.235 1.41068 6.13216 0.377197 0.111497 0 -1 -0
19 7622 4 21.6959 399.389 12.1925 3.18653 5.41659 0.332729 0.0135622 7e-06 0  
20 7622 3 56.9131 1527.33 28.0633 6.67613 40.5204 2.47186 0.0265302 0 0  
22 7622 1 38.9168 37747.2 26.13 0 22.5477 1.37746 0.000597335 0 -2 -0
22 7645 3 42.5498 2707.01 16.54 5.97902 26.1807 1.59939 0.00967142 1e-06 0  
23 7622 1 25.9168 37747.2 13.11 0 9.67505 0.595689 0.000256312 0 -2 -0
23 7645 2 48.9168 37747.2 18.815 11.9324 32.6751 2.01179 0.000865628 0 -2 -0
24 7622 3 27.3603 337.937 22.08 1.54773 11.1857 0.691562 0.0331 7e-06 0  
26 7622 2 35.748 178.071 34.51 4.42649 19.2703 1.16948 0.108217 0 -1 -0
27 7622 1 51.9168 37747.2 38.51 0 35.2925 2.12294 0.000934969 0 -2 -0
28 7622 2 31.7243 246.046 29.69 6.35689 15.1352 0.912356 0.0615134 0 -1 -0
29 7622 1 60.9168 37747.2 48.24 0 44.1763 2.63888 0.00117032 0 -2 -0
30 7622 1 50.9168 37747.2 38.17 0 34.2602 2.05686 0.000907623 0 -2 -0
30 7645 4 75.9818 41.5784 18.815 1.38133 59.3252 3.56166 1.42683 0.113972 0  
32 7622 5 24.9505 4.93462 26.09 1.52163 7.85166 0.459191 1.59114 0 0  
32 7645 4 48.0022 1491.63 19.7425 6.86818 30.9034 1.80733 0.0207178 6e-06 0  
33 7627 3 19.9859 69.2489 11.93 6.48611 2.9109 0.170477 0.0420354 0 -1 -0
34 7622 3 68.7494 3390.99 31.51 8.39737 51.8558 3.06954 0.0152922 0 0  
34 7645 3 24.5813 82.9206 16.9033 6.11957 7.68764 0.455061 0.0927109 0 -1 -0
35 7622 3 49.3223 2175.28 21.9033 6.19134 32.5242 1.93618 0.0149517 1e-06 0  
36 7622 3 16.1445 28.6589 15.7667 0.308989 -1.07532 -0.0624468 -0.0375214 0 -1 -0
37 7622 2 32.9147 273.193 31.215 6.95439 16.2055 0.969848 0.0593187 0 -1 -0
37 7645 2 49.8183 545.975 46.055 14.2659 33.109 1.98148 0.060642 0 -1 -0
38 7622 2 20.5575 151.071 19.525 3.90677 3.37213 0.19622 0.0223215 0 -1 -0
39 7622 3 33.3433 939.526 21.6167 2.76205 15.3775 0.855935 0.0163673 2e-06 0  
39 7946 4 26.9223 287.431 16.6275 5.37088 8.95656 0.498535 0.0311608 6e-06 0  
40 7622 2 17.7005 313.888 15.195 8.17062 -2.2571 -0.113095 -0.00719078 0 -1 -0
40 7645 4 67.9168 37747.2 15.195 11.534 47.9593 2.40306 0.00127054 0 -2 -0
40 7946 5 45.4468 1188.63 13.644 6.59569 25.4893 1.27717 0.0214442 7e-06 0  

Known Bad Fit Eta-Fills

Eta Fill # of Events Peak Peak Error Mean Mean Error Deviation Ratio of Deviation to Mean Weighted Deviation Chi^2 DOF Chi^2/DOF
1 7645 5 -162.295 746.584 32.712 5.37511 -181.244 -9.56504 -0.242765 0.354344 1 0.354344
2 7658 16 -722.823 6129.87 24.5693 3.63959 -740.154 -42.709 -0.120745 0.462132 11 0.042012
2 7865 23 -253.136 756.103 25.8178 5.72682 -270.466 -15.6067 -0.357711 4.06701 11 0.369728
3 7641 31 -374.64 897.542 38.8548 6.93628 -391.09 -23.7738 -0.435735 1.9264 18 0.107022
3 7645 5 -39.006 97.6639 11.87 3.97764 -55.4564 -3.37112 -0.56783 0.158935 1 0.158935
3 7865 40 -169.356 232.162 22.4665 2.39787 -185.806 -11.2949 -0.80033 7.76637 20 0.388319
4 7632 38 -69.6698 90.1208 22.4366 1.70706 -85.9892 -5.26913 -0.954156 7.31369 19 0.384931
4 7637 26 -363.683 940.243 24.9231 3.20896 -380.003 -23.2853 -0.404154 3.28437 17 0.193198
4 7651 10 -33.4488 140.74 24.776 2.46974 -49.7683 -3.04963 -0.353618 0.581991 5 0.116398
5 7646 17 -503.214 2997.59 23.5318 2.79526 -519.797 -31.3451 -0.173405 1.69467 11 0.154061
6 7627 10 -295.23 760.307 20.544 2.62396 -311.627 -19.0054 -0.40987 0.446146 6 0.0743577
6 7674 14 -96.908 3408.75 28.9307 8.25457 -113.305 -6.91019 -0.0332394 0.465872 9 0.0517636
7 7630 33 -554.342 3038.44 26.2752 2.20018 -570.982 -34.3139 -0.187919 9.20749 16 0.575468
7 7646 16 -110.274 431.234 20.8362 1.78132 -126.914 -7.62709 -0.294305 1.93863 8 0.242328
7 7652 51 -63.1174 8.82568 27.4572 3.27111 -79.7574 -4.79312 -9.03697 5.53314 24 0.230547
7 7657 24 -122.051 26.2778 25.4733 4.28524 -138.691 -8.33482 -5.27788 2.68334 11 0.24394
7 7658 20 -79.6501 176.21 19.1015 1.94428 -96.29 -5.78667 -0.546451 2.27219 10 0.227219
7 7946 16 -497.928 2426.77 20.7481 3.74721 -514.568 -30.9236 -0.212038 1.9861 8 0.248263
8 7622 5 -73.9891 288.33 29.554 4.77487 -90.2914 -5.53859 -0.313153 0.317716 1 0.317716
9 7637 23 -23.3765 43.0642 23.6261 2.94623 -39.7635 -2.42652 -0.923355 3.73794 9 0.415327
9 7641 34 -659.53 2779.98 42.2934 5.90999 -675.917 -41.247 -0.243137 4.09492 18 0.227495
9 7658 11 -348.271 1989.46 21.4355 3.70182 -364.658 -22.2528 -0.183294 0.828885 6 0.138148
9 7674 27 -242.607 529.234 25.513 2.80218 -258.995 -15.8048 -0.489376 4.26093 16 0.266308
10 7658 20 -355.279 979.405 30.3755 4.87389 -371.836 -22.4584 -0.379655 1.51073 12 0.125894
10 7946 7 -369.586 2084.62 22.9771 5.59187 -386.143 -23.3225 -0.185234 0.416222 3 0.138741
11 7646 14 -651.061 6665 21.7621 3.46293 -667.405 -40.8362 -0.100136 1.67592 8 0.20949
11 7657 17 -0.020992 1129.16 22.9953 3.29588 -16.3645 -1.00128 -0.0144926 1.28801 11 0.117091
12 7646 27 -66.9036 96.3096 27.0719 4.94485 -83.2472 -5.09357 -0.864371 3.7794 12 0.31495
12 7658 17 -352.274 1851.26 24.2812 3.09065 -368.618 -22.5543 -0.199117 1.2523 12 0.104358
12 7674 22 -201.555 616.238 21.4473 2.20073 -217.899 -13.3324 -0.353595 4.13012 11 0.375465
12 7685 18 -58.89 473.895 23.0772 2.80612 -75.2335 -4.60324 -0.158756 1.76284 10 0.176284
13 7630 21 -2.18303 660.259 19.6248 2.5076 -18.2408 -1.13595 -0.0276268 1.66467 14 0.118905
13 7651 14 -40.2844 644.74 20.7679 2.1083 -56.3422 -3.50871 -0.0873874 1.22913 8 0.153641
14 7646 23 -146.948 256.444 25.8796 3.32407 -163.305 -9.98407 -0.636804 2.99729 13 0.230561
14 7674 25 -115.355 186.193 26.6272 3.77843 -131.712 -8.05255 -0.707394 5.4276 11 0.493418
15 7637 24 -155.96 617.27 20.2467 1.79252 -172.015 -10.7139 -0.278671 4.16486 12 0.347071
15 7651 12 -376.867 2201.05 33.7325 6.98286 -392.922 -24.473 -0.178516 0.436896 7 0.0624137
15 7685 12 -205.157 636.094 24.445 3.55647 -221.213 -13.7781 -0.347767 1.06052 6 0.176753
15 7946 11 -179.666 986.897 16.9745 1.93131 -195.722 -12.1904 -0.19832 0.828924 6 0.138154
16 7630 38 -13.7496 20.1048 23.2105 2.72527 -29.9423 -1.84912 -1.48932 6.2739 16 0.392118
16 7641 33 -319.069 712.412 33.6773 4.70495 -335.262 -20.7044 -0.470601 4.75977 18 0.264432
16 7646 18 -436.452 1720.29 25.8117 3.70441 -452.644 -27.9535 -0.263121 2.77884 10 0.277884
16 7652 45 -78.8639 83.2954 22.13 1.57156 -95.0566 -5.87031 -1.1412 8.9961 20 0.449805
16 7657 28 -194.305 428.471 19.8111 2.54414 -210.497 -12.9995 -0.491276 4.37847 14 0.312748
16 7674 29 -61.8334 746.317 20.1734 1.66547 -78.0262 -4.81858 -0.104548 4.31681 14 0.308343
16 7685 18 -190.094 562.809 23.7067 4.269 -206.287 -12.7394 -0.366531 1.89479 9 0.210532
17 7637 23 -228.508 577.181 22.8991 2.79759 -244.557 -15.2383 -0.423709 2.5927 14 0.185193
17 7641 36 -97.158 156.761 31.3769 4.31425 -113.207 -7.05389 -0.722161 7.21073 16 0.450671
17 7642 40 -179.774 265.176 25.4625 2.93833 -195.823 -12.2017 -0.738465 8.54683 20 0.427342
17 7657 18 -236.913 758.04 24.6456 2.83649 -252.962 -15.762 -0.333705 1.5273 11 0.138846
18 7646 13 -255.732 1933.77 20.3354 2.0078 -271.989 -16.7304 -0.140652 3.09005 6 0.515009
18 7657 17 -428.934 1888.67 25.5253 3.60838 -445.191 -27.3843 -0.235717 2.54822 10 0.254822
18 7685 16 -97.6688 309.225 22.605 4.25345 -113.926 -7.00773 -0.368424 2.59056 6 0.43176
19 7651 10 -654.199 387.385 27.182 5.44986 -670.478 -41.1859 -1.73078 0.460313 6 0.0767188
19 7865 33 -56.4801 71.7536 22.6976 1.60707 -72.7594 -4.46944 -1.01402 5.9763 17 0.351547
19 7946 13 -484.356 3467.84 21.2585 3.19716 -500.636 -30.7529 -0.144365 0.454576 9 0.0505084
20 7641 30 -136.045 284.353 27.5355 2.87934 -152.438 -9.29917 -0.536088 4.84212 15 0.322808
20 7658 27 -93.8957 23.9295 22.02 2.51149 -110.288 -6.72791 -4.60889 3.96436 13 0.304951
20 7674 23 -325.92 1118.85 23.2752 2.8774 -342.313 -20.8821 -0.30595 4.01796 13 0.309074
21 0 36 -129.668 214.379 29.6667 3.92157 -146.248 -8.82097 -0.682193 6.78311 17 0.399006
21 7641 39 -144.034 245.098 23.5859 2.64618 -160.613 -9.6874 -0.655302 8.44895 20 0.422448
21 7685 23 -254.419 715.596 32.5057 4.84377 -270.999 -16.3453 -0.378704 1.52688 14 0.109063
21 7946 7 -132.807 630.403 20.2443 2.60807 -149.387 -9.01029 -0.236971 1.17921 2 0.589604
22 7630 35 -149.413 265.018 32.8674 4.75751 -165.782 -10.1277 -0.625552 4.55739 16 0.284837
22 7641 35 -102.509 142.989 23.2589 2.69187 -118.878 -7.26235 -0.831381 5.64378 16 0.352736
22 7658 19 -20.0999 1934.26 27.6505 5.17233 -36.469 -2.22792 -0.0188543 1.30114 12 0.108428
23 7637 11 -127.375 355.062 24.8082 3.01167 -143.616 -8.8424 -0.404482 0.982009 4 0.245502
23 7642 35 -67.4556 93.3874 23.624 2.54298 -83.6974 -5.15322 -0.896239 3.89249 18 0.21625
23 7658 20 -433.532 2027.93 26.901 3.11484 -449.774 -27.6924 -0.221789 3.36641 12 0.280534
23 7674 24 -254.55 549.111 25.8917 3.11687 -270.792 -16.6726 -0.493146 2.58567 15 0.172378
23 7685 24 -253.079 646.915 23.3354 3.33867 -269.32 -16.582 -0.416315 4.10568 12 0.34214
24 7632 45 -158.492 211.445 23.4044 2.42658 -174.666 -10.7988 -0.826059 13.4837 18 0.749092
24 7637 15 -357.397 1978.04 25.224 2.85512 -373.572 -23.0962 -0.18886 0.870183 10 0.0870183
24 7641 37 -116.445 122.043 25.5168 2.40134 -132.62 -8.19927 -1.08667 6.36603 18 0.353668
24 7674 23 -485.496 2958.4 26.5217 5.55673 -501.67 -31.016 -0.169575 3.55596 14 0.253997
24 7685 21 -195.378 629.346 34.9771 8.50666 -211.552 -13.0793 -0.336146 1.93596 13 0.14892
25 7646 11 -723.282 5759.22 30.9645 5.17808 -739.958 -44.3718 -0.128482 0.450996 7 0.064428
25 7652 46 -88.7993 115.155 21.1983 1.6516 -105.476 -6.32487 -0.915943 11.4329 21 0.544422
25 7946 10 -82.8525 3548.05 23.112 3.37436 -99.5289 -5.96827 -0.0280517 0.462346 6 0.0770577
26 7642 30 -255.741 557.954 25.2053 2.63638 -272.218 -16.5204 -0.487887 6.01531 16 0.375957
26 7645 6 -264.22 1717.19 26.8283 4.68065 -280.698 -17.035 -0.163463 0.410666 2 0.205333
26 7651 20 -57.5385 93.0688 25.459 2.31391 -74.0162 -4.4919 -0.795284 1.13528 10 0.113528
26 7685 16 -217.928 693.073 26.8181 4.42709 -234.406 -14.2257 -0.338212 1.16921 9 0.129912
27 7645 5 -42.7535 15.7492 21.56 2.76656 -59.3779 -3.57174 -3.77021 0.327149 1 0.327149
28 0 34 -60.801 78.2266 20.1779 2.47752 -77.3901 -4.66512 -0.989307 7.0611 14 0.504364
28 7657 17 -276.485 543.431 24.8394 3.38191 -293.074 -17.6667 -0.539302 1.18531 11 0.107755
28 7658 27 -24.3842 3685.73 22.5141 2.72477 -40.9733 -2.4699 -0.0111167 5.18526 13 0.398866
28 7946 7 -16.3182 93.8401 34.8329 13.2704 -32.9073 -1.98367 -0.350674 0.289646 2 0.144823
29 7630 35 -390.822 1555.79 22.8891 2.0307 -407.562 -24.3458 -0.261965 6.45615 19 0.339797
29 7632 56 -252.127 404.405 29.6725 3.16152 -268.867 -16.0608 -0.664847 13.7233 25 0.548934
29 7685 26 -598.86 3563.26 24.5262 3.06826 -615.601 -36.773 -0.172764 4.66493 12 0.388745
29 7865 48 -3.39389 411.141 23.4067 2.41839 -20.1345 -1.20273 -0.0489722 8.73652 26 0.33602
30 7632 36 -119.673 147.381 24.6357 2.2822 -136.33 -8.18473 -0.925016 4.50131 19 0.236911
30 7637 11 -232.243 1395.53 21.3164 3.03241 -248.9 -14.943 -0.178356 0.826994 6 0.137832
30 7641 40 -71.5027 16.6894 28.2851 3.27136 -88.1593 -5.29276 -5.28236 6.43511 18 0.357506
30 7642 46 -64.1883 61.6896 24.0633 2.6442 -80.8449 -4.85363 -1.31051 8.78536 21 0.418351
30 7946 8 -54.9849 42.0146 24.4337 3.14607 -71.6415 -4.30109 -1.70516 1.00907 3 0.336358
31 7630 25 -175.922 390.279 23.0416 3.5338 -192.863 -11.3838 -0.494168 3.33107 13 0.256236
31 7646 18 -870.494 7475.34 30.3167 5.75062 -887.436 -52.3811 -0.118715 0.906901 12 0.0755751
31 7652 44 -25.5923 149.931 24.0795 2.69229 -42.5342 -2.51059 -0.283692 11.2309 16 0.701929
31 7657 22 -163.58 286.717 22.0195 4.02157 -180.522 -10.6553 -0.629617 2.7093 9 0.301033
31 7674 23 -394.52 1151.58 28.1813 3.33528 -411.462 -24.2867 -0.357302 1.63299 16 0.102062
31 7946 10 -58.1625 236.25 18.696 1.39311 -75.1044 -4.43306 -0.317903 0.745645 5 0.149129
33 0 29 -373.706 1574.15 26.2383 1.98957 -390.781 -22.8861 -0.248248 3.22657 19 0.169819
33 7645 5 -29.5913 152.523 18.602 1.84523 -46.6663 -2.73301 -0.305962 0.312283 1 0.312283
33 7646 21 -395.034 1372.52 23.7476 3.8076 -412.109 -24.1352 -0.300257 2.31314 11 0.210285
33 7685 14 -110.62 270.427 22.985 3.10041 -127.695 -7.47846 -0.472197 2.29729 7 0.328184
34 0 31 -112.877 181.045 24.5032 2.36277 -129.771 -7.68163 -0.716787 4.83591 14 0.345422
34 7632 42 -65.2592 18.6265 22.4205 1.98273 -82.1528 -4.86294 -4.41052 7.7001 19 0.405269
34 7646 21 -283.059 881.691 24.8881 3.02442 -299.953 -17.7553 -0.340201 2.33609 13 0.1797
34 7652 43 -182.022 268.576 28.7609 4.00109 -198.915 -11.7746 -0.740631 5.71241 21 0.272019
35 7646 14 -305.799 1714.64 25.8164 6.32991 -322.597 -19.2044 -0.188143 0.855674 8 0.106959
35 7657 19 -465.858 3872.64 23.37 3.77318 -482.657 -28.7328 -0.124633 0.466595 14 0.0333282
36 7646 22 -184.621 456.623 30.015 5.38083 -201.841 -11.7214 -0.44203 2.40663 12 0.200552
37 7685 11 -148.529 628.472 26.1345 4.10675 -165.239 -9.88904 -0.262921 0.750802 6 0.125134
38 0 36 -54.4057 71.3504 20.3419 1.48366 -71.5911 -4.16581 -1.00337 5.62247 15 0.374831
38 7630 33 -169.32 456.911 21.4364 2.05789 -186.505 -10.8525 -0.408187 3.41462 19 0.179717
38 7658 23 -17.5239 34.9903 21.7904 2.62754 -34.7093 -2.0197 -0.991969 4.69944 8 0.587431
39 0 23 -100.439 221.362 18.907 3.62077 -118.405 -6.59059 -0.534895 1.39118 13 0.107014
39 7645 7 -12.1538 60.6808 21.3886 1.29229 -30.1196 -1.6765 -0.496361 0.270745 3 0.0902483
39 7685 12 -447.368 3097.94 24.2233 3.86443 -465.334 -25.9011 -0.150208 1.25151 6 0.208585
40 0 31 -158.897 255.482 23.27 4.85951 -178.855 -8.96177 -0.700068 3.1161 11 0.283281
40 7655 67 -129.691 221.501 23.2605 2.88527 -149.649 -7.49836 -0.675613 11.5369 27 0.427293