- My blog
- Post new blog entry
- Top bloggers
- Recent posts
Shower Shape Analysis (Kurtosis)
Updated on Wed, 2007-10-24 14:39. Originally created by betan on 2007-10-23 12:49.Problem:
test blog entry1
Updated on Tue, 2009-08-11 10:17. Originally created by balewski on 2007-10-19 14:51.Test Blog Jan
Single-Spin Asymmetries by BBC timebin
Updated on Thu, 2007-10-18 12:56. Originally created by kocolosk on 2007-10-18 12:46.This is a study of 2005 data conducted in May 2006. Ported to Drupal from MIT Athena in October 2007
Hi jetters. Mike asked me to plot the charged track / pion asymmetries in a little more detail. The structure is the same as before; each column is a trigger, and the four rows are pi+/Yellow, pi+/Blue, pi-/Yellow, pi-/Blue. I've split up the high pt pion sample (2< pT < 12 GeV) and plotted single-spin asymmetries for timebins 7,8, and 9 separately versus pT and phi. The plots and summaries are linked at the bottom of the page.
2 sigma effects are highlighted in yellow, 3 sigma in red. There are no 3 sigma asymmetries in the separate samples, although pi-/B/JP1 is 3 sigma above zero in the combined sample. Here's a table of all effects over 2 sigma:
timebin
|
charge
|
trig
|
asym |
effect
|
8
|
+
|
HT1
|
Y |
+2.2
|
9
|
+
|
JP1
|
B | +2.07 |
9 | - | JP1 | B | +2.45 |
7-9 | - | JP1 | B | +3.15 |
If you compare these results with the ones I had posted back in March (First Look at Single-spin Asymmetries), you'll notice the asymmetries have moved around a bit for the combined sample. The dominant effect there was the restriction to the new version of Jim's golden run list. The list I had been using before had at least two runs with spotty timebin info for board 5; see e.g.,
http://www.star.bnl.gov/HyperNews-star/protected/get/jetfinding/355/1/1/1.html
and ensuing discussion. I'm in the process of plotting asymmetries for charged track below 2 GeV in 200 MeV pT bins and will post those results here when I have them.
First Look at Single-spin Asymmetries
Updated on Thu, 2007-10-18 12:53. Originally created by kocolosk on 2007-10-18 12:30.This is a study of 2005 data conducted in March 2006. Ported to Drupal from MIT Athena in October 2007
eL_asymmetries.pdf
phi_asymmetries.pdf
I also increment 20 separate histograms with (asymmetry/error) for each fill and then fit the resulting distribution with a Gaussian. Ideally the mean of this Gaussian should be centered at zero and the width should be exactly 1. The results are in asymSummaryPlot.pdf
Finally, a summary of single-spin asymmetries integrated over all data. 2-sigma effects are highlighted in bold:
+ | MB | HT1 | HT2 | JP1 | JP2 |
Y | 0.0691 +/- 0.0775 | 0.0069 +/- 0.0092 | -0.0038 +/- 0.0126 | 0.0086 +/- 0.0104 | 0.0116 +/- 0.0069 |
B | -0.0809 +/- 0.0777 | -0.0019 +/- 0.0092 | -0.0218 +/- 0.0126 | 0.0067 +/- 0.0104 | -0.0076 +/- 0.0069 |
- | MB | HT1 | HT2 | JP1 | JP2 |
Y | -0.0206 +/- 0.0767 | -0.0193 +/- 0.0092 | -0.0158 +/- 0.0130 | -0.0035 +/- 0.0101 | 0.0061 +/- 0.0070 |
B | 0.0034 +/- 0.0769 | -0.0021 +/- 0.0092 | 0.0006 +/- 0.0130 | -0.0164 +/-0.0101 | -0.0147 +/- 0.0070 |
Conclusions: The jet group sees significant nonzero single-spin asymmetries in Yellow JP2 (2.5 sigma) and Blue JP1 (4 sigma). I do not see these effects in my analysis. I do see a handful of 1 sigma effects and two asymmetries for negatively charged hadrons that just break 2 sigma, but in general these numbers are consistent with zero. I also do not see any significant dependence on track phi.
BBC Vertex
Updated on Thu, 2007-10-18 12:13. Originally created by kocolosk on 2007-10-18 11:04.This is a study of 2005 data conducted in March 2006. Ported to Drupal from MIT Athena in October 2007
Goal: Quantify the relationship between the z-vertex position and the bbc timebin for each event.
Procedure: Plot z-vertex as a function of trigger and bbc timebin. Also, plot distributions of bbc timebins for each run to examine stability. Exclude runs<=6119039 as a result. Fit each vertex distribution with a gaussian and extract mean, sigma. Plots are linked at the bottom of the page. See in particular page 8 of run_plots.pdf, which shows the change from 8 bit to 4 bit onlineTimeDifference values.
Timebin 12 had zero counts for each trigger. Summaries of the means and sigmas:
m | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
mb | 101.7 | 124.1 | 56.3 | 22.72 | -7.835 | -38.89 | -80.48 | -135.6 | - |
ht1 | 81.09 | 111.8 | 50.75 | 16.88 | -13.49 | -44.57 | -89.36 | -182.8 | - |
ht2 | 79.86 | 107.2 | 48.93 | 15.76 | -14.27 | -45.17 | -89.76 | -176.7 | - |
jp1 | 101.3 | 139.3 | 54.8 | 17.68 | -12.95 | -44.05 | -92.4 | -176 | - |
jp2 | 99.49 | 128.5 | 51.58 | 15.77 | -14.29 | -45.5 | -94.1 | -192.2 | - |
s | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
mb | 68.85 | 67.48 | 40.4 | 34.26 | 33.31 | 35.91 | 49.32 | 76.29 | - |
ht1 | 68.99 | 70.9 | 43.06 | 34.71 | 32.49 | 34.86 | 47.42 | 79.98 | - |
ht2 | 67.64 | 70.13 | 43.06 | 34.76 | 32.55 | 34.98 | 47.26 | 78.22 | - |
jp1 | 76.49 | 79.85 | 45.44 | 35.6 | 32.56 | 35.34 | 49.69 | 78.1 | - |
jp2 | 76.18 | 78.01 | 45.73 | 35.79 | 32.87 | 35.68 | 49.37 | 81.21 | - |
Conclusions: Hank started the timebin lookup table on day 119, so this explains the continuous distributions from earlier runs. In theory one could just use integer division by 32 to get binned results before this date, but it would be good to make sure that no other changes were made; e.g., it looks like the distributions are also tighter before day 119. Examining the vertex distributions of the different timebins suggests that using timebins {6,7,8,9} corresponds roughly to a 60 cm vertex cut. A given timebin in this range has a resolution of 30-45 cm.
HBT PWG Contribution to QM08 (v1.1)
Updated on Tue, 2007-10-16 20:31. Originally created by kopytin on 2007-10-16 20:25.Updated version.
Abstract:
2005 BSMD zero-suppressed ADCs (minbias triggers)
Updated on Tue, 2007-10-16 17:16. Originally created by kocolosk on 2007-10-16 16:46.Motivation: We see a strange band structure in raw ADC vs. softId plots for the BSMD. To date these plots have been generated by integrating over all triggers. The idea here is to restrict to minimum-bias triggers to see if some of these bumps around ADC >~ 500 could be due to trigger turn-on curves.
Results: At first glance, the trigger doesn't seem to be causing much of the bump. On the left is a projection of raw ADC for BSMDE strips 1-150 using all triggers from 2005 pp data. On the right is the same plot for MB-only, rebinned to deal with the limited statistics. The MB plot was generated from a separate runlist with roughly 3x more statistics than the trigger-integrated plot.
Stats aren't great, but I think one can pick out the three bumps at ~500, ~570, and ~610, plus the ending spikes at ~710. Looks like it's not the trigger.
References:
2005 BSMD zero-suppressed ADCs
2005 BSMD zero-suppressed ADCs
Updated on Tue, 2007-10-16 20:50. Originally created by kocolosk on 2007-10-16 08:53.Background: Ahmed posted some studies of the BSMD in Run 7 indicating that the ADC dynamic range is limited. Pibero and Willie showed a dramatic band structure of the raw ADCs in the 2006 pp, and people wondered how far back this structure existed. Here is the data from 2005.
What's being plotted:
- 2005 pp data
- BSMDE
- zero-suppressed at (adc-ped) < 1.5*rms
- NOT pedestal-subtracted
- restricted to status==1
- ~4000 files from throughout Run 5
- strip softId on x-axis -- each plot is another 1000 strips
And finally, here's a projection of strips 1-150:
Clearly, the band structure was there as well.
Update: Renee mentioned that 4500-4600 look a little cleaner than the rest. Here are projections for 4500-4590 and 4500-4650. The band structure doesn't disappear, but the slope of the exponential fall-off is steeper so fewer counts end up in the screwy 500+ regime. Here are the results of fits to the region 100 - 150:
0001-0150: slope = -0.0105
4500-4650: slope = -0.0130
4500-4590: slope = -0.0150
HBT PWG Contribution to QM08 (v1)
Updated on Mon, 2007-10-15 19:12. Originally created by kopytin on 2007-10-15 19:12.See attached version 1 of the Analysis Meeting talk
2006 TPC Drift Velocity Investigation
Updated on Sun, 2007-10-14 06:59. Originally created by kocolosk on 2007-10-13 21:42.Procedure
- Restore st_laser DAQ files from HPSS
- cons StRoot/StLaserAnalysisMaker
- Run a simple BFC chain: root.exe -q -b 'bfc.C(9999,"LanaDV,ITTF","path_to_st_laser_daq_file")'
- execute LoopOverLaserTrees.C+("./st_laser_*.tags.root") to generate drift velocity measurements
Results
Here are the drift velocity measurements currently in the Calibrations_tpc database and the ones that I recalculated from the st_laser DAQ files. I'm only showing measurements from the 10 days around the purge:I'm not sure how much attention should be paid to the original East laser measurements. The West laser measurements in the DB track pretty closely with the new ones. The significant difference is that there are more new measurements covering the period where the D.V. was changing rapidly:
So what we're really interested in is, for a given event, how different will the D.V. returned by the database be? The way to calculate that is to compare each new measurement to the DB measurement with the closest preceding beginTime:
In the West ratio plot one can clearly see the effect of the additional measurements. For comparison I've plotted the time period where we see problems with the track DCAs and <nTracks> / jet. See for example
http://deltag5.lns.mit.edu/~kocolosk/protected/drupal/4036/summary/bjp1_sum/bjp1_sum_dcaG.gif
http://drupal.star.bnl.gov/protected/spin/trent/jets/2007/apr06/problem_highlights.gif
http://cyclotron.tamu.edu/star/2006Jets/apr23_2007/driftVelocityProb.list