- Hard Probes
- Heavy Flavor
- Jet-like correlations
- Other Groups
- Peripheral Collisions
- Spin
- Spin PWG
- Spin/Cold-QCD Older Physics Analysis
- 2006 EEMC Neutral Pion Cross Section and A_LL
- 2006 Gamma + Jet
- 2009 Lambda D_LL @ 200 GeV
- 2009 dijet x-sect/A_LL @ 200 GeV
- 2011 FMS Jet-like correlations @ 500 GeV
- 2011 FMS inclusive pions @ 500 GeV
- 2012 EEMC Neutral Pion A_LL
- 2012 Jet A_LL @ 500 GeV
- 2012 Lambda D_TT @200GeV
- 2012 Pi0 - Jet A_LL @ 500
- 2012 Pions in Jets A_UT @ 200 GeV
- 2012 dijet A_LL @ 500
- 2012/13 FMS A_LL @ 500 GeV
- 2013 Di-jet A_LL @ 500 GeV
- A New Users Guide to PDSF Success
- Analyses from the early years
- (A) List of Physics Analysis Projects (obsolete)
- Common Analysis Trees
- EEMC Direct Photon Studies (Pibero Djawotho, 2006-2008)
- G/h Discrimination Algorithm (Willie)
- Neutral Pions 2005: Frank Simon
- Neutral strange particle transverse asymmetries (tpb)
- Photon-jet with the Endcap (Ilya Selyuzhenkov)
- Relative Luminosity Analysis
- Run 6 Dijet Cross Section (Tai Sakuma)
- Run 6 Dijet Double Longitudinal Spin Asymmetry (Tai Sakuma)
- Run 6 Inclusive Jet Cross Section (Tai Sakuma)
- Run 6 Neutral Pions
- Run 6 Relative Luminosity (Tai Sakuma)
- Run 8 trigger planning (Jim Sowinski)
- Run 9
- Beam Polarizations
- Charged Pions
- Fully Reconstructed Ws
- Jet Trees
- W 2009 analysis , pp 500 GeV
- W 2011 AL
- Useful Links
- Working Group Members
V0 decays
Updated on Thu, 2008-05-08 02:58. Originally created by tpb on 2008-05-08 02:58.
Under:
V0 decays
The appearance of the decay of an unobserved neutral strange particle into two observed charged daughter particles gives rise to the terminology 'V0' to describe the decay topology. The following neutral strange species have been analysed:
Species | Decay channel | Branching ratio | K0S | π+ + π- | 0.692 |
---|---|---|
Λ | p + π- | 0.639 |
anti-Λ | anti-p + π+ | 0.639 |
Candidate V0s are formed by combining together all possible pairs of opposite charge-sign tracks in an event. The invariant mass of the V0 candidate under different decay hypotheses can then be determined from the track momenta and the daughter masses (e.g. for Λ the positive daughter is assumed to be a proton, the negative daughter a π-minus). Raw invariant mass spectra are shown below. The spectra contain three contributions: real particles of the species of interest; neutral strange particles of a different species; combinatorial background from chance positive/negative track crossings.
Figure 1: Invariant mass spectrum under K0s hypothesis |
Figure 2: Invariant mass spectrum under Λ hypothesis |
Figure 3: Invariant mass spectrum under anti-Λ hypothesis |
Selection cuts are applied to the candidates to suppress the background whilst maintaining as much signal as possible. There are two methods for reducing background; energy-loss particle identification and geometrical cuts on the V0 candidates.
»
- Printer-friendly version
- Login or register to post comments