- Bulk correlations
- Common
- GPC Paper Review: ANN-ASS pp Elastic Scattering at 200 GeV
- Hard Probes
- Heavy Flavor
- Jet-like correlations
- LFS-UPC
- Measurement of Single Transverse Spin Asymmetry, A_N in Proton–Proton Elastic Scattering at √s = 510 GeV
- Other Groups
- Peripheral Collisions
- Spin
- Spin PWG
- Results and data
- Spin/Cold-QCD Older Physics Analysis
- 2006 EEMC Neutral Pion Cross Section and A_LL
- 2006 Gamma + Jet
- 2009 Lambda D_LL @ 200 GeV
- 2009 dijet x-sect/A_LL @ 200 GeV
- 2011 FMS Jet-like correlations @ 500 GeV
- 2011 FMS inclusive pions @ 500 GeV
- 2011 IFF @ 500 GeV
- 2011 Pions in Jets A_UT @ 500 GeV
- 2012 EEMC Neutral Pion A_LL
- 2012 IFF @ 200 GeV
- 2012 Jet A_LL @ 500 GeV
- 2012 Lambda D_TT @200GeV
- 2012 Pi0 - Jet A_LL @ 500
- 2012 Pions in Jets A_UT @ 200 GeV
- 2012 dijet A_LL @ 500
- 2012/13 FMS A_LL @ 500 GeV
- 2013 Di-jet A_LL @ 500 GeV
- A New Users Guide to PDSF Success
- Analyses from the early years
- (A) List of Physics Analysis Projects (obsolete)
- Common Analysis Trees
- EEMC Direct Photon Studies (Pibero Djawotho, 2006-2008)
- G/h Discrimination Algorithm (Willie)
- Neutral Pions 2005: Frank Simon
- Neutral strange particle transverse asymmetries (tpb)
- Photon-jet with the Endcap (Ilya Selyuzhenkov)
- Relative Luminosity Analysis
- Run 6 Dijet Cross Section (Tai Sakuma)
- Run 6 Dijet Double Longitudinal Spin Asymmetry (Tai Sakuma)
- Run 6 Inclusive Jet Cross Section (Tai Sakuma)
- Run 6 Neutral Pions
- Run 6 Relative Luminosity (Tai Sakuma)
- Run 8 trigger planning (Jim Sowinski)
- Run 9
- Beam Polarizations
- Charged Pions
- Fully Reconstructed Ws
- Jet Trees
- W 2009 analysis , pp 500 GeV
- W 2011 AL
- W 2012 AL (begins here)
- W/Z 2013 Analysis
- Useful Links
- Weekly PWG Meetings
- Working Group Members
- Yearly Tasks
Geometrical cuts
Updated on Thu, 2008-05-08 03:09. Originally created by tpb on 2008-05-08 03:07.
Under:
Geometrical cuts
Energy loss cuts are successful in eliminating a significant portion of the background, but further reduction is required to give a clear signal. In addition final yields are calculated by a bin counting method, which requires that the background around the signal peak has a straight line shape. Therefore additional cuts are placed on the V0 candidates based on the geometrical properties of the decay. There are five quantities on which I chose to cut:
- Distance of closest approach (DCA) of the V0 candidate to the primary vertex: if the V0 candidate is a genuine particle, its momentum vector should track back to the interaction point. Spurious candidates will not necessarily do so, therefore an upper limit is placed on the approach distance of the V0 to the interaction point.
- DCA between the daughter tracks: due to detector resolution the daughter tracks never precisely meet, but placing an upper limit of the minimum distance of approach reduces background from spurious track crossings.
- DCAs of the positive and negative daughter tracks to the primary vertex: the daughter tracks are curved due to the magnetic field and a neutral strange particle will decay some distance from the interaction point. Therefore the daughter tracks should not extrapolate back to the primary vertex, but to some distance away from it. Placing a lower limit on this distance can reduce background from tracks originating from the interaction point.
- V0 decay distance: neutral strange particles decay weakly, with cτ ~ cm, so the decay vertex should typically be displaced from the interaction point. A lower limit placed on the decay distance of the V0 helps eliminate backgrounds from particles originating at the interaction point.
I wrote a class to help perform tuning of these geometrical cut quantities (see /star/u/tpb/StRoot/StV0CutTuning/) by a "brute force" approach; different permutations of the above quantities were attempted, and the resulting mass spectra analysed to see which permutations gave the best balance of background reduction and signal retention. In addition, the consistency of the background to a straight-line shape was required. Due to the limits on statistics, signal retention was considered a greater priority than background reduction. The cut values I decided upon are summarised in table one. Figures one to three show the resulting mass spectra (data are from all runs). Yields are calculated from the integral of bins in the signal (red) region minus the integrals of bins in the background (green) regions. Poisson (√N) errors are used. The background regions are fitted with a straight line, skipping the intervening bins. The signal to background quoted is the ratio of the maximum bin content to the value of the background fit evaluated at that mass. Note that the spectra have the the dE/dx cut included in addition to the geometrical cuts.
Species | Max DCA V0 to PV* | Max DCA between daughters | Min DCA + daughter to PV | Min DCA − daughter to PV | Min V0 decay distance |
---|---|---|---|---|---|
K0S | 1.0 | 1.2** | 0.5 | 0.0** | 2.0** |
Λ | 1.5 | 1.0 | 0.0** | 0.0** | 3.0 |
anti-Λ | 2.0** | 1.0 | 0.0** | 0.0** | 3.0 |
Table 1: Summary of geometical cuts. All cut values are in centimetres.
* primary vertex
** default cut present in micro-DST
Figure 1: Final K0S mass spectrum with all cuts applied. |
Figure 2: Final Λ mass spectrum with all cuts applied. |
Figure 3: Final anti-Λ mass spectrum with all cuts applied. |
»
- Printer-friendly version
- Login or register to post comments