11 BPRS absolute gains from MIP, ver1.0 ( example of towers)

Under:

 BPRS absolute gains from MIP, ver 1.0 

  • INPUT: ~9 days of fmsslow-triggered events, days 62-70, 200 runs, 6M events
  • DATA CORRECTIONS:
    • private  BPRS peds(cap,softID) for every run,
    • private status table, excluded only 7 strips with ADC=0
    • event-by-event capID corruption detection and correction
    • use vertex with min{|Z|}, ignore PPV ranking, to compensate for PPV problem
    • BPRS swaps detected by Rory in 2007 data have been applied 
    • BTOW swaps detected & applied
  • TRACKING:
    • select prim tracks with pr>0.4 GeV, dEdX in [1.5,3.3] keV, |eta|<1.3, zVertex <50 cm
    • require track enters & exits a tower 1cm from the edge
  • triple MIP coincidence, requires the following (restrictive) cuts:
    •  to see BPRS  MIP ADC :  TPC MIP track and in the same BTOW tower  ADC in [10,25] 
    •  to see BTOW MIP ADC :  TPC MIP track and in the same BPRS tile  ADC in [7,30] 

 


Fig 1 Typical MIP signal seen by BPRS(left) & BTOW (right) for soft ID=??, BPM16.2.x  (see attachment 1 for more)

Magenta line is at MIP MPV-1*sigma -> 15% false positives

 


Fig 2 Typical MIP signal seen by BPRS, pmt=BPM16.2

Average gain of this PMT is on the top left plot, MIP is seen in ADC=4.9, sig=2.6


Fig 3 Most desired MIP signal (ADC=16) seen by BPRS(left) & BTOW (right) for soft ID=1388, BPM12.1.8

Magenta line is at MIP MPV-1*sigma -> 15% false positives,  (see attachment 2 for more)

 


Fig 4 Reasonable BPRS, pmt=BPM11.3, pixel to pixel gain variations is small

 


Fig 5 High MIP signal (ADC=28) seen by BPRS(left) & BTOW (right) , BPM11.5.14

Magenta line is at MIP MPV-1*sigma -> 15% false positives,  (see attachment 3 for more)

 


Fig 6 High gain BPRS, pmt=BPM11.5