- BEMC
- BEMC Detector Operator Manual
- Calibrations
- BPRS
- BSMD
- 1) DATA: 2008 BSMD Calibration
- 01) raw spectra
- 02) relative BSMD-E gains from 1M dAu events
- 03) more details , answering Will
- 04) bad CAP 123
- 05) BSMDE saturation, dAu, 500K minB eve
- 06) QAed relative gains BSMDE, 3M d-Au events , ver1.0
- 07) QA method for SMD-E, slopes , ver1.1
- 08) SMD-E gain equalization , ver 1.1
- 09) QA of SMD-P slopes, ver1.1
- 10) SMD-P gain equalization , ver 1.1
- 12) investigating status of P-strips
- 13) ver 1.2 : SMD-E, -P, status & relative gains, no Crate4
- 14 Eval of BSMDE status tables for pp 2008, day 49,50
- 15 stability of BSDM peds, day 47 is good
- 15a ped stability day 47, take 2
- 16) Time stability by fill of BSMD pedestals
- 17) Absolute gains , take1
- 18 Absolute gains, take 2
- 19) Absolute BSMD Calibration, table ver2.0, Isolated Gamma Algo description
- 20 BSMD saturation
- 1) M-C : response of BSMD , single particles (Jan)
- BSMD 2005 energy scale uncertainty
- Definition of absolute BSMD calibration
- Mapping, strip to tower distance
- Run 10 BSMD Calibrations
- Run 9 BSMD Calibration
- details about known hardware problems
- details of SMD simulator, simu shower zoom-in
- one cluster topology , definition of 'barrel cell'
- 1) DATA: 2008 BSMD Calibration
- BTOW - Calibration Procedure
- Run 12 BTOW Calibration
- Run 3 BTOW Calibration
- Run 4 BTOW Calibration
- Run 5 BTOW Calibration
- Run 6 BTOW Calibration
- Run 7 BTOW Calibration
- Run 8 BTOW Calibration (2008)
- Run 9 BTOW Calibration
- Database
- Hardware
- Mapping
- Service Tasks
- Software
- Useful Documents
- BTOF
- DAQ
- Detector Upgrades
- EEMC
- EPD
- ETOF
- FCS
- FGT
- FPD & FMS & FPS
- FTPC
- FTT
- HFT
- HLT
- L3
- MTD
- MTD NPS Maps
- PMD
- PP2PP
- RICH
- Roman Pot Phase II*
- Run-18 calibrations
- SSD
- SVT
- Slow Controls
- TPC
- TRG
- Trigger Detectors
- VPD
- test
17) Absolute gains , take1
Updated on Fri, 2008-08-08 23:08. Originally created by balewski on 2008-08-08 19:58.
Under:
Goal: reco isolated gammas from bht0,1,2 -triggered events
Method: identify isolated EM shower and match BSMD cluster energy to tower energy, as exercised earlier on 4) demonstration of absolute calib algo on single particle M-C
INPUT events: 7,574 events triggered by barrel HT0,1,2 (id 220500 or 220510 or 220520) from run 9047029.
Cluster finder algo (sliding window, 1+3+1 strips), smd cluster threshold set at 5 keV, use only barrel West.
Tower cluster is defined as 3x3 patch centered on the tower pointed by the SMD peak.
Assumed BSMD calibration:
- ene(GeV)= (adc-ped)*1e-7, one constant for all barrel
- pedestals, status tables hand tuned, some modules are disabled, but crate 4 is on
Results for ~3,8K barrel triggered events (half of 7,6K was not used)
Fig 1, Any Eta-cluster
TOP: a) Cluster (Geant) energy;
b) Cluster RMS, peak at 0.5 is from low energy pair of isolated strips with almost equal energy
c) # of cluster per event,
BOTTOM: X-axis is eta location, 20 bins span eta [-1,+1]. d) cluster ene vs. eta, e) cluster RMS vs. eta,
f) cluster yield vs. eta & phi, white bands are masked modules.
Fig 2, Any Phi-cluster
see Fig 1 for details
Fig 3, Isolated EM shower
TOP: a) cluster loss on subsequent cuts, b) # of accepted EM cluster vs. eta location,
c) ADC distribution of 3x3 tower cluster centered at SMD cluster. In principle you should see there 3 edges from bht0, bht1, and bht2 trigger.
BOTTOM: X-axis is eta location, 20 bins span eta [-1,+1].d) Eta-cluster , e) phi-cluster energy, f) hit tower ADC .
Fig 4a,b, Calibration plots
TOP: BSMD Eta vs. Phi as function of pseudorapidity. BOTTOM: BSMD vs. BTOW as function of pseudorapidity.2 eta location of 0.1, 0.5 of reco EM cluster are shown in 3 panels (2x2)
1D plots are ratios of the respective 2D plots.
The mean values of 1D fits are relative gains of BSMDP/BSMDP and BSMD/BTOW .
Fig 4c, Same as above, eta=0.9
»
- Printer-friendly version
- Login or register to post comments