- Bulk correlations
- Common
- GPC Paper Review: ANN-ASS pp Elastic Scattering at 200 GeV
- Hard Probes
- Heavy Flavor
- Jet-like correlations
- LFS-UPC
- Measurement of Single Transverse Spin Asymmetry, A_N in Proton–Proton Elastic Scattering at √s = 510 GeV
- Other Groups
- Peripheral Collisions
- Spin
- Spin PWG
- Results and data
- Spin/Cold-QCD Older Physics Analysis
- 2006 EEMC Neutral Pion Cross Section and A_LL
- 2006 Gamma + Jet
- 2009 Lambda D_LL @ 200 GeV
- 2009 dijet x-sect/A_LL @ 200 GeV
- 2011 FMS Jet-like correlations @ 500 GeV
- 2011 FMS inclusive pions @ 500 GeV
- 2011 IFF @ 500 GeV
- 2011 Pions in Jets A_UT @ 500 GeV
- 2012 EEMC Neutral Pion A_LL
- 2012 IFF @ 200 GeV
- 2012 Jet A_LL @ 500 GeV
- 2012 Lambda D_TT @200GeV
- 2012 Pi0 - Jet A_LL @ 500
- 2012 Pions in Jets A_UT @ 200 GeV
- 2012 dijet A_LL @ 500
- 2012/13 FMS A_LL @ 500 GeV
- 2013 Di-jet A_LL @ 500 GeV
- A New Users Guide to PDSF Success
- Analyses from the early years
- (A) List of Physics Analysis Projects (obsolete)
- Common Analysis Trees
- EEMC Direct Photon Studies (Pibero Djawotho, 2006-2008)
- 2006.07.31 First Look at SMD gamma/pi0 Discrimination
- 2006.08.04 Second Look at SMD gamma/pi0 Discrimination
- 2006.08.06 Comparison between EEMC fast and slow simulator
- 2006.09.15 Fit Parameters
- 2007.02.05 Reconstructed/Monte Carlo Photon Energy
- 2007.02.08 E_reco / E_mc vs. eta
- 2007.02.11 Reconstructed/Monte Carlo Muon Energy
- 2007.02.15 160 GeV photons
- 2007.02.15 20 GeV photons
- 2007.02.15 80 GeV photons
- 2007.02.15 Reconstructed/Monte Carlo Electron Energy
- 2007.02.19 10 GeV photons
- 2007.02.19 40 GeV photons
- 2007.02.19 5 GeV photons
- 2007.02.19 Summary of Reconstructed/Monte Carlo Photon Energy
- 2007.05.24 gamma/pi0 separation in EEMC using linear cut
- 2007.05.24 gamma/pi0 separation in EEMC using quadratic cut
- 2007.05.24 gamma/pi0 separation in EEMC using quadratic cut
- 2007.05.30 Efficiency of reconstructing photons in EEMC
- 2007.06.12 gamma/pi0 separation in EEMC at pT 5-10 GeV
- 2007.06.28 Photons in Pythia
- 2007.07.09 How to run the gamma fitter
- 2007.07.25 Revised gamma/pi0 algorithm in 2006 p+p collisions at sqrt(s)=200 GeV
- 2007.09.12 Endcap Electrons
- 2008.01.23 Endcap etas
- 2008.02.27 ESMD shape library
- 2008.02.28 ESMD QA for run 7136033
- 2008.03.04 A second look at eta mesons in the STAR Endcap Calorimeter
- 2008.03.08 Adding the SMD energy to E_reco/E_MC for Photons
- 2008.03.21 Chi square method
- 2008.04.08 Data-Driven Shower Shapes
- 2008.04.12 Data-Driven Residuals
- 2008.04.12 Pythia Gamma-Jets
- 2008.04.16 Jet Finder QA
- 2008.04.20 BUR 2009
- 2008.04.22 Run 6 Photon Yield Per Trigger
- 2008.05.07 Number of Jets
- 2008.05.09 Gamma-jets pT distributions
- 2008.05.19 Binning the shower shape library
- 2008.06.03 Jet A_LL Systematics
- 2008.06.18 Photon-jet reconstruction with the EEMC - Part 2 (STAR Collaboration Meeting - UC Davis)
- 2008.07.16 Extracting A_LL and DeltaG
- 2008.07.20 How to install Pythia 6 and 8 on your laptop?
- 2008.07.23 Hot Strips Identified by Hal Spinka
- 2008.07.24 Strips from Weihong's 2006 ppLong 20 runs
- G/h Discrimination Algorithm (Willie)
- Neutral Pions 2005: Frank Simon
- Neutral strange particle transverse asymmetries (tpb)
- Photon-jet with the Endcap (Ilya Selyuzhenkov)
- Relative Luminosity Analysis
- Run 6 Dijet Cross Section (Tai Sakuma)
- Run 6 Dijet Double Longitudinal Spin Asymmetry (Tai Sakuma)
- Run 6 Inclusive Jet Cross Section (Tai Sakuma)
- Run 6 Neutral Pions
- Run 6 Relative Luminosity (Tai Sakuma)
- Run 8 trigger planning (Jim Sowinski)
- Run 9
- Beam Polarizations
- Charged Pions
- Fully Reconstructed Ws
- Jet Trees
- W 2009 analysis , pp 500 GeV
- W 2011 AL
- W 2012 AL (begins here)
- W/Z 2013 Analysis
- Useful Links
- Weekly PWG Meetings
- Working Group Members
- Yearly Tasks
2007.07.25 Revised gamma/pi0 algorithm in 2006 p+p collisions at sqrt(s)=200 GeV
Updated on Fri, 2010-07-16 11:21. Originally created by seluzhen on 2010-07-16 10:37.
Under:
Pibero Djawotho Last updated Wed Jul 25 10:07:07 EDT 2007
Revised gamma/pi0 algorithm in 2006 p+p collisions at sqrt(s)=200 GeV
Description
The class
computes the maximal sided residual of the SMD response in the u- and v-plane for gamma candidates. It is based on C++ code developed by Jason Webb from the original code by Les Bland who got the idea from CDF (?) The algorithm follows the steps below:
- The SMD response, which is SMD strips with hits in MeV, in each plane (U and V) is stored in histogram hU and hV.
- Fit functions fU and fV are created. The functional form of the SMD peak is a double-Gaussian with common mean and fixed widths. The widths were obtained by the SMD response of single photons from the EEMC slow simulator. As such, the only free parameters are the common mean and the total yield. The actual formula used is:
[0]*(0.69*exp(-0.5*((x-[1])/0.87)**2)/(sqrt(2*pi)*0.87)+0.31*exp(-0.5*((x-[1])/3.3)**2)/(sqrt(2*pi)*3.3))
- [0] = yield
- [1] = mean
- The mean is fixed to the strip with maximum energy and the yield is adjusted so the height of the fit matches that of the mean.
- The residual for each side of the peak is calculated by subtracting the fit from the data (residual = data - fit) from 2 strips beyond the mean out to 40 strips.
- The maximal sided residual is the greater residual of each side.
Code
Candidates selection
- 2006 p+p at 200 GeV dataset from Sivers analysis (from Jan Balewski)
/star/institutions/iucf/balewski/prodOfficial06_muDst/
- Gamma candidate from gamma maker: 3x3 clusters with pt > 5 GeV
- No track pointing to cluster
- Minimum of 3 SMD hits in each plane
- Cuts from Jan & Naresh electron analysis:
- Preshower 1 energy > 0.5 MeV
- Preshower 2 energy > 2.0 MeV
- Postshower energy < 0.5 MeV
- The triggers caption in the PDF files shows the trigger id's satisfied by the event. A red trigger id is a L2-gamma trigger. I observe that generally the L2-gamma triggered event are a bit cleaner. Also shown is the pt and energy of the cluster.
Raw SMD response
- No additional cuts
- Pick only L2-gamma triggers
- Pick only L2-gamma triggers but no jet patch trigger
- Make isolation cut (see below)
The parameters of the isolation cut were suggested by Steve Vigor:
Hi Pibero,
In general, I believe people have used smaller cone radii for isolation
cuts than for jet reconstruction (where the emphasis is on trying to
recover full jet energy). So you might try something like requiring
that no more than 10 or 20% of the candidate cluster E_T appears
in scalar sum p_T for tracks and towers within a cone radius of
0.3 surrounding the gamma candidate centroid, excluding the
considered cluster energy. The cluster may already contain energy
from other jet fragments, but that should be within the purview of
the gamma/pi0 discrimination algo to sort out. For comparison, Les
used a cone radius of 0.26 for isolation cuts in his original simulations
of gamma/pi0 discrimination with the endcap. Using much larger
cone radii may lead to accidental removal of too many valid gammas.
Steve
Pibero Djawotho Last updated Wed Jul 25 10:07:07 EDT 2007
»
- Printer-friendly version
- Login or register to post comments